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SUMMARY 

The present report contains practical applications of the Quantum 1/f Effect, further 
development of the Quantum 1/f Theory, and contributions not directly based on quantum 1/f 
noise. The application to quartz resonators has been improved by the inclusion of crystal defects in 
the quantum 1/f noise calculation, and has been generalized to the case of low-Q and surface 
acoustic wave devices, where Q is the quality factor. The generalization is of great practical and 
theoretical importance, because it introduces the notion of incoherence between the quantum 1/f 
fluctuations of the phonon loss rate of various regions in the volume of the crystal. The 
applications also include calculation of quantum 1/f noise in gallium nitride, a material an increased 
number of uses and with a bright future in microelectronics and opto-electronics. The level of 1/f 
noise is found to be 3-10 times lower in GaN than in GaAs. 

The quantum 1/f theory was reformulated to put in evidence the manifest entropy 
conservation of the quantum 1/f fluctuation process with the help of the Quantum Information 
Theory and the notion of negative quantum conditional entropy. This reformulation of the theory 
on the basis of the new negative entropy concept explains the apparent entropy production with the 
help of a simultaneous production of negative entropy soft photon states. A long-standing 
conceptual difficulty is eliminated on this basis. 

Of tremendous practical and theoretical importance is the discovery during this grant of a 
new method of connecting the coherent and conventional quantum 1/f effects. A mass distribution 
has been found, which allows to find the quantum 1/f noise in general. 

Furthermore, a method of gate current suppression in HFET with high dielectric constant 
gate insulation and a two-dimensional all-optical time-division multiplexing system were found. 

Other important new developments reported include the prediction of fundamental 1/f 
fluctuations of the quantum 1/f decoherence rate and of the radiation resistance of antennas. The 
quantum 1/f theory was applied to flexible ultrathin semiconductor samples, as well as to nanoscale 
semiconductor and magnetic structures. This allowed the calculation of 1/f noise in spin-polarized 
transport, with applications to spin-valves, spin-transistors and giant magneto-resistance effects. 
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I. INTRODUCTION 

The present Technical Report contains a brief presentation of the main achievements 
obtained by the author during the three years of the AFOSR grant F49620-98-1-0176. These 
achievements are both of practical and of theoretical nature, the close interconnection of these two 
aspects being a main characteristic of our research. 

Our account will start with new practical results in the high-tech field, specifically, with a 
necessary generalization of the author's quantum 1/f theory of frequency fluctuations In the case of 
ultra-high-Q quartz resonators to the important case of intermediate and low-Q resonators. The 
first case, generalized in the present grant period to crystals with lattice defects, is essential for the 
best resonators at NIST, the National Institute of Standards-and Technology. They help define the 
limits of our notion of time and frequency, and we present this case in Sec. HI. The second case is 
the basis of our industrial applications of bulk acoustic wave (BAW) and surface acoustic wave 
(SAW) quartz resonators. It is given in Sec. II. 

New ni-V materials such as GaN are of increasing importance for HFETs. GaN has been 
used to produce semiconductor lasers and LEDs over wide frequency domains, up to Jthe blue 
region. ni-V materials are also used in advanced infrared imaging arrays and in novel piezoelectric 
III-V semiconductor devices. All these new materials and devices are affected by the conventional 
and often, if they are larger, also by the coherent quantum 1/f noise effect. During the previous 
grant period, the conventional quantum 1/f effect was calculated in detail as a function of 
temperature and doping level for Si and GaAs, as reported in the 1997 Final Report. In order to 
help in the development of the new technology, as shown in Sec. IV., we have calculated the 
quantum 1/f noise in GaN, thereby enabling the quantum 1/f optimization process for this material. 

Fundamental progress in understanding the nature of the measurement process and in 
eliminating a basic contradiction of quantum mechanics was recently obtained on the basis of the 
new Quantum Information-Theoretical Approach. This fundamental progress is based on the new 
notion of Negative Quantum (von Neumann) Entropy of quantum entangled states. The 
contradiction between the well-known unitary character of the evolution of the state of a system, 
which precludes any increase in entropy, and the actual increase of the entropy of the system as a 
result of the measurement process has been eliminated for the first time. 

The present author has applied this fundamentally new concept of negative entropy for the 
first time to the conventional quantum 1/f effect, as shown in Sec. V. As a result, a way to 
eliminate the long-standing contradiction of the entropy of quantum 1/f noise appearing from 
nowhere was found. The entropy of quantum 1/f noise, which was thought to violate the unitarity 
of the evolution of the combined system of electromagnetic field and charged particles carrying a 
current, has now been shown by us to be fully compensated by the negative entropy of the 
entangled electromagnetic bremsstrahlung field. No other known phenomenon was so deeply 
affected in its understanding by the notion of Negative Quantum Entropy as the Quantum 1/f 
Effect. The derivation of the conventional quantum 1/f effect and of the Quantum 1/f Entropy, 
without the use of any assumptions about the non-unitary character measurement process, is 
presented in Sec. V. Refer to paper #1 in the list of publications during the grant. 

The quantum 1/f theory provides answers for any questions concerning the fundamental 1/f 
noise, just as Maxwell's equations answer for electromagnetism. Therefore, the quantum 1/f 
theory must also provide the correlations of any order as well as the joint 1/f noise distributions 
and momenta of any order for any number of time arguments. This ultimate, exhaustive and total 
information is contained in the characteristic functional of the process, derived for the subtle case 
of thermal noise in Sec. VI. Physically, it corresponds to quantum 1/f fluctuations in the level of 
Nyquist noise in voltage and in current, but not in available power. The characteristic functional 
for quantum 1/f current noise was derived earlier. Finally, we note that the fractal dimension of a 
1-dimensional model of the quantum 1/f effect was derived during the previous grant period, as 
shown in the 1994 Report, but the general case has not been solved so far due to mathematical 
complexity. 

A long-standing fundamental problem in the quantum 1/f theory is the continuous transition 



between the coherent and conventional quantum effects for intermediate sizes of the semiconductor 
or metallic sample or device. The main problem was that in spite of the obvious relation of the two 
effects as two aspects of the same phenomenon, it was not clear how to improve on the well- 
known 1985 interpolation result, or even how to start. A possible practical way of proceeding was 
developed during this grant and is presented in Sec. VII. This represents a new way of bridging 
the intermediary region of device sizes. 

Other, less fundamental progress, has been achieved during this grant in the following 
directions: 1) Application of ferroelectric and high e paramagnetic materials to the design of high- 
transconductance HFETs with low 1/f noise and low gate leakage current, as demonstrated in Sec. 
Vni; 2) Two-dimensional generalization of an all-optical parallel-to-series TDM system and de- 
multiplexing system with use of a spectral-holographic method for radical noise reduction and 
better channel capacity utilization — this one is also fundamental, but from a practical point of 
view, as we see in Sec. IX. This system uses a multiple-quantum well device as its nonlinear 
element. At this point it is not clear whether the aberration, quantum 1/f, hysteresis, and device 
non-uniformity caused noises can all be held sufficiently low at the MOW device in order to make 
this suggestion useful.; 3) Application of the quantum 1/f effect to ultrathyi, flexible, 
semiconductor devices and calculation of the change in noise resulting from bending (Sec. X); 
4) The first application of the quantum 1/f theory to nanoscale semiconductor and magnetic 
structures; 5) Prediction and first calculation of the quantum 1/f fluctuations in the electronic and 
nuclear spin-flip rates, with application to spintronics and quantum computing (Sec. XI; see papers 
# 3 and 12 in the list of publications during the grant.). The new contributions are discussed 
briefly below in relation to the corresponding papers mentioned in the list of publications during 
the grant in Sec. XIII: 

1. The nature of the transition between the coherent and conventional quantum 1/f formulas 
has been clarified and described for the first time on the basis of an effective quantum 1/f rest mass 
distribution of the electron. This allows us to describe in detail how the coherent quantum 1/f 
contribution is effectively reduced to conventional quantum 1/f noise when the size of a sample is 
decreased. Refer to paper #4 in the list of publications during the grant. 

2. The quantum 1/f effect was applied for the first time to antennas, proving that the 
radiation resistance exhibits fundamental 1/f noise of practical importance. Refer to paper #5 in the 
list of publications during the grant. 

3. A study of the fundamental 1/f fluctuations in the quantum decoherence rate. Refer to 
papers #11 and 14in the list of publications during the grant. 

4. A calculation of the quantum 1/f effect in the widely used ferroelectric LiNb03. Refer to 
papers #6 and 9 in the list of publications during the grant. 

5. Finally, the application of the quantum 1/f theory to high-Q quartz resonators and 
frequency standards mentioned above in points 2 and 12 above was extended for the first time to 
the general incoherent case of lower-Q and surface-acoustic-wave quartz resonators and 
successfully compared with the experimental evidence. These developments, important for 
practical technical applications and for the optimization of quartz devices and systems were 
presented at the May 1998 Annual Frequency Control Symposium in Orlando. Refer to papers #2, 
8 and 10 in the list of publications during the grant. 

6. The quantum 1/f field was reviewed, with the latest developments included, through a 
practical invited article "Noise, Low Frequency" in the Wiley Encyclopedia of Electrical and 
Electronics Engineering. Refer to paper # 10 in the list of publications during the grant. 

The present state concerning 1/f noise in high-tech applications is still characterized by a 
serious discrepancy. A new understanding of the fundamental quantum nature of low-frequency 
(1/0 noise has been achieved, but in practice, most high-technology devices still operate far above 
the quantum limit defined by the new theory. Actually, the quantum limit can be achieved, and 
even this limit could be lowered in practice by improving the design on the basis of the quantum 1/f 
theory. 

The trouble is localized both at the level of the materials used and at the level of device 
design. Other detrimental aspects are the presence of large leakage currents in heterostructure field 



effect transistors (HFET, studied at the Wright Patterson AFB by F. Schuermeyer) or junction 
devices (studied at Hanscom Rome AFB by J.M. Mooney and N.F. Yannoni), and the lack of a 
satisfactory quantum theory of mesoscopic devices which starts from a quantum admittance theory 
of highly transmissive devices. The former causes very detrimental signal power drain as well as 
large 1/f noise, while the latter causes device builders to overlook many possibilities offered by 
quantum interference and tunneling effects in submicron devices. 

The quantum 1/f effect is a fundamental fluctuation of all currents of charged j>articles j, of 
all scattering cross sections as, recombination cross sections cr, tunneling rates or transition rates 

of any kind T, in short of all physical cross sections a and process rates T, given by the universal 

formula S(f) = 2aA/fN (conventional quantum 1/f equation- f 1-13]) for small devices, and S(f) = 

2a/7tfN (coherent quantum 1/f equation [13-16]) for large devices. These two forms can be 
combined into a single general formula, as we show below.   Here S(f) is the spectral density of 
fractional fluctuations in current, 8j/j, in scattering or recombination cross section do/o, or in any 

other process rate 6T/r. a=e2/h c=l/137 is Sommerfeld's fine structure constant, a magic number 
of our world depending only on Planck's constant fi , the charge of the electron e and the speed of 
light in vacuum c. A=2(AV/C)

2
/3TC is essentially the square of the vector velocity change Av of the 

scattered particles in the scattering process whose fluctuations we are considering, in units of c. 
Finally, N is the number of particles used to define the notion of current j, of cross section a or of 

process rate T. 



II.    INCOHERENCE OF THE QUANTUM 1/F EFFECT IN LOW-Q BAW AND 
SAW QUARTZ RESONATORS 

1. Introduction 

The application of the quantum 1/f theory to bulk acoustic wave (BAW) and surface 
acoustic wave (SAW) quartz resonators has so far been limited to the case of^very high Q 
resonators in which the phonons are coherent throughout the resonator volume. Here the quantum 
1/f theory is applied to the general case of an arbitrary coherence length of the phonons, which may 
be large or small compared with the size of the quartz resonator. This allows to extend the theory 
for the first time to low-Q resonators in which the phonons-are localized in a part of the resonator 
volume. The theory is also extended to include defect scattering along with the phonon scattering 
case exclusively published so far. 

Phonon scattering in the resonator is known to limit the short- and medium-term frequency 
stability in all quartz resonators [17]. Phonon scattering can occur on other phonons (particularly 
at higher temperatures) or on crystal defects (favored by default at low temperatures). „In both 
cases this process is shown to yield a 1/f spectrum of resonator frequency fluctuations"through the 
conventional Quantum 1/f Effect.   As was first shown on this basis with the help of a simple 
harmonic oscillator model [18], BAW and SAW quartz resonators ought to have a Q-4 dependence 
of their FM power spectrum. This has been experimentally verified by Gagnepain and Uebersfeld 
for BAW resonators [19] when they first noticed their 1/Q4-4 law, and by Parker for the SAW 
case[20]. Although the quantum 1/f effect provided the historical basis for the derivation of the Q-4 

law [18] as being caused by fluctuations in the dissipation rate of the quartz resonator, the exact 
mechanism through which the quantum 1/f effect modulates the dissipation rate remained unknown 
from 1978 to 1991. 

Finally, the bridge directly connecting 1/f noise in frequency standards to the quantum 1/f 
effect was discovered [21]-[23]. Here is how it works. The rate T of photon-interactions which 
remove phonons from the main quartz resonator mode is modulated by the quantum 1/f effect, 
therefore exhibiting observable quantum fluctuations, while its expectation value remains constant. 
Indeed, whenever a phonon is removed from the main resonator mode, the time-derivative of the 

• 
polarization vector of the quartz crystal dP/dt=P ,  is suddenly jolted, suffering a step-like 

• 
modification as a function of time. From Maxwell's equations we know, however, that P is 
added to the current J and that such a modification of the current causes radiation. Solving 
Maxwell's equations we find that as a result of the phonon removal there is a constant energy of 

(l/47ie0)4(AP )2/3c3 radiated away per unit frequency, i.e. per Hertz at any frequency f. Dividing 
• 

this result by the energy of a photon hf, we find that there is thus a probability of 2a(AP 

)2/37tfe2c2 for the emission (radiation) of a bremsstrahlung photon of frequency f.   Here a = 

(l/47t£0)(27ie2/hc) = 1/137 is Sommerfeld's fine structure constant, a dimensionless universal 
constant constructed from Planck's constant, the charge e of the electron, and the speed of light c. 
SI units are used here, while Gaussian units were used in [23]. 

Since there is a probability of 2a(AP )2/37rfe2c2 « 1 for the emission of a photon of 
frequency f, the quartz crystal suffers a reaction, or a recoil, in its quantum state.  This causes the 
phonon-emission rate T to perform quantum oscillations with frequency f and with two-sided 
spectral density S' of fractional fluctuations. The latter is given by the same expression, S'5r/r(f) 

= 2a(AP )2/37tfe2c2. This is the quantum 1/f effect. The one-sided spectrum is thus 



S5r/r(f) = 4a(AP )2/37tfe2c2. (1) 

This means that any radiation caused or implied by a quantum transition from one state to another 
comes with a price: it reacts back on the system, causing the rate of that transition to be modulated. 
The physical rate exhibits observable macroscopic quantum fluctuations with a spectral density of 
fractional fluctuations identical to the photon emission probability accompanying the transition 
considered. No special knowledge of quantum mechanics is therefore needed in order to apply the 
quantum 1/f effect. Knowledge of electrodynamics is needed, however, in order to calculate the 
energy radiated in a transition. 

The reader interested in a basic understanding of the quantum 1/f effect will find a most 
accessible description at the end of p. 8 and beginning of p. 9 in [24]. That description considers 
scattering of electrons as an example of transition which emits radiation and suffers a quantum 1/f 
modulation of its rate, rather than considering scattering of phonons, which, as we believe, is most 
important in quartz resonators. All that is involved in that derivation is the notion of DeBroglie 
wave associated to a particle, or the notion of wave function. Pre-quantum mechanics notions are 
thus sufficient for a basic understanding of the recoil, or energy-loss mechanism, of the quantum 
1/f effect (Ql/fE). For a practical application of the Ql/fE, however, classical physics is sufficient. 

2. Spatial incoherence of phonon loss rate fluctuations in low and intermediate Q 
resonators. 

The treatment [21]-[23] we have provided so far, assumes that the photons are spread over 
the whole crystal, and that therefore there is coherence of the quantum 1/f phonon loss rate 
fluctuations throughout the resonator volume. In the limit of very high Q resonators, and of high 
resonator frequency, the mean free path and the coherence length e of the phonons exceed the size 
of the resonator and our assumption is justified. However, in the low Q and low frequency case 
the coherence length is small compared with the dimensions of the resonator crystal. The resonator 
volume is then composed of many incoherent regions of volume £3 which fluctuate independently. 
This is applicable in particular to SAW resonators, as suggested empirically by Parker et al. [25], 
[26].   We are here borrowing their notation of the size of the coherent volume elements by e. 

Considering the v=V/e3 independently fluctuating regions similar, we replace Eq. (1) by 

v 

Ssr/r(f) = X<(öTi/r)2>f = v-l<(8T]/rü2>f =4a(APj )2/37tfve2c2. (2) 
i=l 

Here we assumed that r=vFj and that <(8ri/rj)2>f = vS5r/r(f) is independent of i. With v=V/e 
we finally obtain 

S8r/r(0 =4ae3(APj )2/37tfVe2c2 (3) 

in the incoherent domain i.e., for sufficiently large V and small Q. The corresponding fluctuations 
in the frequency 0) of the quartz resonator are derived from the equations 

CO2 = coo2 -2r2, co5(0 = -2r6r;S5(o/co(f) = (l/4Q4)S5Y/7(f), (4) 

in which co0 would be the natural frequency of the unloaded quartz resonator mode in the absence 

of the dissipation T.  Therefore the spectral density of fractional frequency fluctuations S5C0/{0(f) 

8 



will display the same 1/V-dependence in the incoherent regime, down to a volume V=£. Below 
this volume we expect a proportionality of Ssco/mCf) with the volume. Consequently, Ssco/(o(f) 
will first increase proportional to 1/V in the incoherent region, and will decrease proportional to V 
when V is lowered to values below E. This line of thought, however, neglects the fact that 
resonators operate usually in the lowest vibration mode, and that therefore a decrease in volume 
will correspond to a certain increase in the frequency co0.   The latter is also connected with the 

speed of the sound cs and the acoustic attenuation length l=l/aac=2csQ/co0=£. 
The phonon mean free path is about 40 Ä for bulk wave phonons in quartz at room 

temperature and 500 Ä at liquid nitrogen temperatures.  This approximates the phonon coherence 
length e very well. For SAW phonons the corresponding coherence length values may be 4 times 
lower due to the smaller velocity of the surface wave and due to its stronger scattering. 

In a SAW quartz resonator the wave is localized within about two coherence lengths e from 

the surface. Therefore, in the incoherent regime V = 2eA is a good approximation. 
Consequently, we expect an increase of Sgco/co(f) proportional with 1/A when the resonant area A 
is decreased, down to very small areas of the order of e2. 

The incoherence encountered here is similar to the incoherence introduced spatially by the 
very small coherence length of electrons in semiconductors, of the order of 30Ä. The quantum 1/f 
effect and therefore the measured 1/f noise, has no spatial correlations in semiconductors down to 
this very small length scale. No other 1/f noise "models" can explain this experimental fact. The 
quantum 1/f contributions from each electron are independent, which causes a factor 1/Ne to be 
present in all quantum 1/f effect formulas. Here Ne is the number of electrons present in the 
sample, which had the transition considered as their last interaction. 

In the following section we consider the quantum 1/f effect in a resonator volume of size 
equal or smaller than e in all directions, the result being applicable whether or not it represents the 
whole resonator mode. 

HI. SPATIAL COHERENCE OF THE Ql/f PHONON LOSS RATE 
FLUCTUATIONS IN HIGH-Q RESONATORS INCLUDING DEFECT 

SCATTERING. 

Let the resonator volume V be smaller than the phonon coherence length e in all directions. 

Then v=l and we can use Eq. (1). In Eqs. (l)-(3), (AP )2 is the square of the dipole moment rate 
change associated with the process causing the removal of a phonon from the main oscillator 
mode: scattering of a main resonator mode phonon on a themal phonon of higher frequency 

• 
<0)>=kT/H . After this, we will include also the case of defect scattering below. To calculate (AP 

)2, we write the energy W of the interacting mode <co> in the form 

W = nh <co> = 2(Nm/2)(dx/dt)2 

=(Nm/e2)(edx/dt)2=(m/Ne2)82(P)2; (5) 

The factor two includes the potential energy contribution.  Here m is the reduced mass of 
the elementary oscillating dipoles, e their charge, g a polarization constant of the order of the unity, 
and N their number in the resonator. Applying a variation An=l we get 

An/n = 2IAP l/IP I, or AP =P /2n. (6) 

9 



Solving Eq. (5) for P and substituting into (6), we obtain 

IAP I- = (Nh <0)>/n) 1/2(e/2g). (7) 

Substituting AP into Eq. (1), we get 

r-2Sr(f) = Nafi <co>/3n7tmc2fg2 s A/f. -      (8) 

This result is applicable to the fluctuations in the loss rate T of the resonator volume. 
From Eq. (4) the corresponding resonance frequeney-fluctuations of the quartz is given for 

V<eby 

co-2Sco(f) = (l/4Q4)(A/f) = Nah <co>/12nromc2fg2Q4; (9) 

where Q =co/2r is the quality factor of the single-mode resonator considered, and <co> is not the 
circular frequency of the main resonator mode, but rather the practically constant frequency of the 
average interacting (thermal) phonon. Indeed, there are an average n^kT/h CO phonons present in 

any mode of frequency co. For the case of quartz resonators we have used the interacting thermal 

mode of average frequency <co> to calculate the quantum 1/f effect. The corresponding AP  in the 

main resonator mode of frequency co0 has to be also included, but is negligible because of the very 
large number n of phonons present in the main resonator mode and entering in the denominator of 
Eqs. (7)-(9). 

Considering also Eq. (3), Eq. (9) can be written in general with N=VN/V in the form 

S(0 = ß'V/fQ4, for V<e, (10) 

and 

S(f) = ß'e2/fVQ4, for V>e, (11) 

where, with an intermediary value <co>=108/s, with n=kT/h <co>, T=300K and kT=4 »10~21 J 

ß' =(N/V)ari <co>/12mtg2mc2 

=1022(l/137)(10-27108)2/12kTrcl0-27 9 1020 =1. (12) 

For the case of defect scattering, a two-phonon process takes place.  A phonon from the 
main resonator mode scatters on a defect and a phonon of comparable frequency emerges into 
another mode with much smaller phonon occupation number noFkT/fi co.  In this case we have to 

replace <co> by co and n<(ü> with n©, which gives a ß-value which is (<co>/co)2 smaller, i.e. !04- 

106 times smaller. In general, therefore, writing r=F + T", we obtain for the combined phonon 
and defect scattering case, in general, 

ß=ß,[r,2 + (<co>/co)2r"2]/r2. (13) 
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Although the defect scattering term is small at room temperature, it may become dominant at low 
temperatures, when the phonon scattering rate F becomes much smaller than the defect scattering 

rater". 
The form of Eqs. (10)-(13) shows that the level of 1/f frequency noise depends not only 

like Q~4 as proposed for quartz by the author in 1978, but is a non-monotonous function of the 
volume of the active region. The noise first increases with volume, then after reaching a maximum 
of the order of the phonon-coherence volume, it decreases with size. For quartz, this theory fits 
the data of Gagnepain who varied the Q-factor with temperature in the same quartz resonator (but 
not frequency or volume). It also fits the data of E.S. Ferre-Pikal and F.L. Walls [17'] who 
considered several quartz resonators which differ in volume-and frequency (Fig. 1). At the same 
time, it also fits the data of T.E. Parker and D. Andres [25], [26], for SAW resonators, with their 
relatively low Q values, on the same quantum 1/f theoretical curve of Fig. 1. Indeed, according to 
[17'], the median value of the FM noise L(10 Hz) in dBc/Hz for 12 unswept quartz resonators is - 
103.1, -101.6 and -97.7 for small, medium and large electrodes respectively, in reasonable 
agreement with the proportionality with V, which requires a 6 dB difference between the groups 
with large and small electrodes. The electrode diameters of the 3 size groups were 2.16 mm, 3.05 
mm, and 432 mm. The volumes were therefore approximately proportional with the numbers 
4.67, 9.30 and 18.66, and therefore with the measured median values. However, the remaining 
scatter present in the data, is analyzed in terms of the defect contributions and coherence 
corrections given by Eqs. (10)-( 13). 

log S(f)/ß 

-23 

-24 

-25 

-26 

O.Olv 

BAW: ß=l 
£=4cm ? 

Fere-Pi kal, 
Walls et al 

SAW: ß= 120 
8=316[x 

Parker, Andres et al. 

Fig. 1: The non-monotonous dependence of 1/f noise in various types 
of quartz resonators on the resonant quartz volume V is described by 
the quantum 1/f formulas (10)-(13) from first principles. 

The theory also provides the basis for predicting from first principles, without adjustable 
parameters, how to improve the 1/f level of resonators, beyond just improving the Q-factor, which 
has been known for many years, and which has been related [18] to fluctuations in the dissipation. 
Since the 1/f noise level depends on the active volume, in the coherent regime one should use the 
lowest overtone and smallest diameter consistent with other circuit parameters. In the incoherent 
(low Q) case, the opposite should be considered. 
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IV. QUANTUM 1/F NOISE IN GaN SAMPLES 

Due to the importance of gallium nitride (GaN) for both the solid-state microelectronics and 
the opto-electronics of the future, a calculation of the fundamental 1/f noise in this material is of 
primary importance and is long overdue. We start with (1) a simple evaluation of the conventional 
quantum 1/f effect in impurity or defect scattering, continue with (2) the calculation of the same 
effect in acoustic phonon scattering and in (3) the particularly important optical phonon scattering. 
On this basis we calculate then (4) the resulting conventional quantum 1/f effect. This calculation 
will be done both for n-type and p-type devices approximately, by neglecting corrections 
introduced by the energy distribution of the electrons and-the author's cross-correlations formula. 
The errors introduced by this approximation are estimated to be in the 10-20% interval. We then 
calculate (5) the coherent quantum 1/f effect, and provide on this basis (6) a final result for GaN 
samples of any size and any nature. 

1. Impurity or defect scattering. As briefly mentioned at the end of Sec. I and as derived below in 
Sec. V, the conventional quantum 1/f effect in a scattering cross section a or recombination rate T 
is given by 

S8c/a(f) = Ssnr(f) = 2aA/fN (14) 

Here S(f) is the spectral density of fractional fluctuations in current, oj/j, in scattering or 

recombination cross section 5o/a, or in any other process rate, 8r/r.    As mentioned above, 

cc=e2/h c=l/137 is Sommerfeld's fine structure constant, a basic number of our world depending 
only on Planck's constant h , on the charge of the electron e and on the speed of light in vacuum c. 
A=2(Av/c)2/37t is essentially the square of the vector velocity change Av of the scattered particles 
in the scattering, recombination or tunneling process whose fluctuations we are considering, in 
units of c.   Finally, N is the number of particles used to define the notion of current j, of cross 
section a or of process rate T. 

For impurity or defect -caused scattering we obtain therefore the quantum 1/f coefficient 

2ocA = (4CX/3TU)(AV/C)
2
 = (4oc/37i)(Ap/meffc)2 , (15) 

which is evaluated assuming a thermal energy 3kT/2 for the motion of the current carriers. Note 
that 4a/37t is 3.1-10-3. Thus, 

2aA = (4a/37t)<(Av/c)2> = (4a/37t)(6kT/meffC2) = 1.2-109 (T/300K)(mo/meff)    (16) 

and we obtain for electrons with effective mass meff= 0.2mo in n-type GaN 

2aA(e) = 6-10"9 (17) 

and for holes with effective mass meff= 0.8mo in p-type GaN 

2aA(h>= 1.5-10-9. (18) 

For comparison, we note that for n-type GaAs with meff=0.068mo we had 2aAe = 1.8-10"8 and 

for p-type GaAs with meff=0.5mo we had 2aAh = 2.4-10~9. Here m0 is the free electron mass. 
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2. Normal phonon scattering. In this case we put in Eq. (15) lApl = AE/s, where <AE>~kT is the 
energy change of the acoustical phonon in the scattering process and s is the speed of sound. We 
obtain 

2ocA = (4a/37u)(kT/meffCs)2 = 3-10"8 (T/300K)2(mo/meff)2. (19) 

Therefore, for electrons with effective mass meff= 0.2mo in n-type GaN 

2aA(e) = 7.5-10-7 (20) 

and for holes with effective mass meff= 0.8mo in p-type GaN 

2aA(h) = 4.7-10-8. (21) 

3. Optical phonon scattering.    In this case, the fractional quantum 1/f fluctuation" ÖT/Tof the 

electron scattering rate T on a polar optical phonon of momentum fi q and energy fi G)q~ü)0 is 
described by the quantum 1/f coefficient 

2aA = (4ot/37c)<(fi q/meffc)2> = (4a/3rc)2<(fi k/meffc)2> 

= (4a/37c)(6kT/meffc2) = 1.2-109 (T/300K)(mo/meff), (22) 

the same as for impurity or defect scattering, and we obtain as before for electrons with effective 
mass meff= 0.2mo in n-type GaN 

2aA(e) = 6-10-9 (23) 

and for holes with effective mass meff= 0.8mo in p-type GaN 

2aA(h)= 1.5-lO-9. (24) 

For comparison, we note that for n-type GaAs with meff=0.068mo we had 2aA(e) = 1.8-10"8 and 

for p-type GaAs with meff=0.5mo we had 2aA(h) = 2.4-10"9. 

4. Resulting conventional quantum 1/f coefficient and spectral density. Both for electrons and 
holes, the resulting quantum 1/f coefficient of fluctuations in the mobility |i is given by the relation 

2aA(e.h) = Zi(|i/U.i)2 2aAi(e.h), (25) 

where 2aAj is the quantum 1/f coefficient calculated for the scattering process #i which contributes 
to limiting the observed mobility according to the relation 

l/ji = Zi(l/»ii). (26) 

Finally, if both electrons and holes contribute to the conductivity X^e(p|ih + n(ie), the spectral 
density of conventional quantum 1/f fractional fluctuations in A. is 
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S8XA(f) = 2(e2o/ a2)[(PWl)2A(h)/Nh + (nMe)2A<e)/Ne]. (27) 

This allows for the calculation of quantum 1/f noise in any small sample. The transition to the 
coherent quantum 1/f effect applicable for large samples is discussed at the end of the next Sec. V. 

Our general conclusion is encouraging, and can only help to brighten the future for GaN 
even more. Specifically, as we have seen above, the conclusion is that small GaN samples and 
devices offer lower 1/f noise levels than comparable GaAs samples or devices, by aiactor of 3 to 
10, mainly due to the larger effective masses of the current carriers. 

V.    NEGATIVE ENTROPY IN THE QUANTUM 1/f EFFECT 

1. Schematic derivation of the conventional quantum 1/f effect 

The author's recent application of the new Quantum Information Theory Approach (QIT, 
developed 1996) to Infra Quantum Physics (IQP) explains for the first time the apparent-lack of 
unitarity caused by the entropy increase in the Quantum 1/f Effect (Ql/fE, developed by us 1974). 
Indeed, he now offers a more rigorous proof of the conventional quantum 1/f effect in this report, 
which shows that actually there is no resultant entropy increase and therefore unitarity is not 
violated. His new proof involves the concept of von Neumann Quantum Entropy, including the 
negative conditional entropy concept for quantum entangled states. The Ql/fE was applied to 
many high-tech systems, in particular to ultra-small electronic devices. The present report explains 
how the additional entropy implied by the Ql/fE arises in spite of the entropy-conserving evolution 
of the system. 

The conventional quantum 1/f effect is a fundamental fluctuation of all currents of charged 
particles j, of all scattering cross sections GS, recombination cross sections ar, tunneling rates or 

transition rates of any kind T, in short of all physical cross sections a and process rates F, given 
by the universal formula 

S(f) = 2aA/fN (28) 

We present here only a schematic derivation. Let's simplify our world and assume only 
one electromagnetic mode of the universe would be present, with frequency co and wave vector k. 
Consider the field mode in its ground state and a pair of 2 incoming identical charged particles with 
the same well-defined wave vector being scattered by some potential. Both the initial and the final 
state represent a pure state. The initial state is l++->0, where we reserved the first two arguments 
of the ket for the two electrons and the last (-) for the field. Due to the interaction with the field, 
the final state will be 

|f> = (|++-> + TJH—h>/V2 + *yl-++>/V2)/(V 1+Y2), (29) 

where Y is the emission amplitude of a bremsstrahlung photon, i.e., for the excitation of the field 
oscillator from its ground state (-) to its first excited state (+). The first two arguments label the 
state of the charged particles, indicating the presence of an energy loss with (-) and the persistence 
in the same energy state with (+). The third argument of the kets always labels the field oscillator, 
as mentioned. 

The corresponding density operator of the pure state obtained is p = Ifxfl.   Its quantum 

von Neumann entropy S/k = a = -Tr(p log p) is zero. 
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2, f aradoxfcal entropy increase in 1/f noise and quantum information theory 

Ignoring the field oscillator, i.e., taking the trace of over the field oscillator label, we obtain a 
classically correlated system, a mixture of 2 pure states, described by the density operator 

[I++X++I + Y
2
0+-> + !-+>)(<+-! + <-+I)/2]/(1+Y

2
). (30) 

The second term gives the Ql/fE at f=co/2jt, as we show below. The corresponding entropy is 

log(l+Y2) - (Y2logY2)/(l+Y2) > 0 for 0^Y
2
^1 . _ (31) 

The entropy of the system thus appears to have increased although according to quantum 
mechanics it can not increase. Indeed, according to quantum mechanics, time evolution of a state 
occurs through a unitary transformation. The latter, however, is known to leave a = -Tr(p log p) 
invariant. 

The quantum information theory (QIT) solves this paradox. When two systems A and B 
with quantum von Neumann entropy o(A) = -TrA(pAlogpA) and o(B) = -TrB(pBlogpB) form a 

composite system AB of entropy o(AB) = -Tr^p^logp^ we can prove that we have to write 

o(AB) = o(A) + O(B1A) = o(B) + o(AIB), (32) 

in perfect analogy with classical entropies or information. We have introduced o(AIB) as the von 
Neumann entropy of A conditional on B, or the entropy of A when we know B: 

o(AIB) = -TrAB[pABlogpA|B]. (33) 

Here we have introduced the conditional density matrix pA|B= PAB(lA®pB)1, the quantum analog 

similar to the classical conditional probability, where ® is the tensor product in the joint Hilbert 

space and p^Tr/p^) is the marginal density matrix obtained by taking a partial trace over the 
variables associated with A. 

3, Negative entrOPV and solution of the parado* 

The conditional entropy is usually negative in quantum entangled states. Finally we 
introduce the quantum mutual entropy which represents the shared entropy, corresponding to the 
mutual information between A and B: 

o(A:B) = -Tr[PABlogpA.B] . a(A) + a(B) - o(AB), (34) 
where 

PA:B=PAB(PA®PB)'
1
- (35) 

Taking all logarithms in the base of 2, the entropies will be expressed in bites. Considering our 
paradoxical case discussed above for simplicity with Y2

=1, we obtain (Fig.2) the following entropy 
■diagram Of OUT quantum mechanically entangled triplet of three systems comprising the. rharaeH 
particles A and B. as well as the field" osdllatAr r»    ^ wiiii»iiMng mr riw^n 
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Fig. 2. 

Here the quantum conditional entropies are underlined for emphasis, and the mutual quantum 
entropy has double underlining. Dotted underlining marks the mutual entropy of two of the 
subsystems, which is, however, not the mutual entropy of the whole system. We see that A, B 
and C have each 1 bit of entropy, as we expect, since each can be in a + or - state. In addition, 
°ABC 

= 0 as expected for a pure state. The negative conditional entropies indicate that this state is a 
pure quantum state which can not be obtained in classical physics. 

If we ignore C by tracing over it (Fig. 3), we obtain the classically correlated system AB 
with its positive entropy of I and the negative quantum entropy state of the ignored field oscillator, 
conditional on AB: 

Fig. 3. 

In conclusion, the negative conditional entropy of the ignored field oscillator 
compensates the positive entropy of the system of two particles. Unitarity and entropy 
conservation are both satisfied. This is the solution of the paradox. It explains why our earlier 
explanation of the Ql/fE in terms of a two-particle wave function was correct, in spite of the 
apparent lack of unitarity. 

4. Derivation of the conventional qnantum 1/f effect 

In the rest of the present section we apply the scheme developed here to the real world with 
all field oscillators present in l++->0 and with N incident particles in l++->0. 

We start with the expression of the Heisenberg representation state lf> of N identical 
bosons of mass M emerging at an angle 6 from some scattering process with undetermined 

bremsstrahlung energy losses reflected in their one-particle waves <pi(ii) 

tf> = (N!)-l/2 nj mm(£iW+(li) \0> = III J<Pii<R(Si) lf>>, (36) 
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where xjJ+(|i) is the field operator creating a boson with position vector £j and I0> is the vacuum 

state, while lf°> is the vacuum field state with N bosons of position vectors £j with i = 1 ...N. All 
products and sums in this section run from 1 to N, unless otherwise stated. 

To calculate the particle density autocorrelation function in the outgoing scattered wave we 
need the expectation value of the operates- ' 

0(xi,X2) = ^+(xi)^(x2)ii)(x2)tp(xi), *      (37) 

known as the operator of the pair correlation. Using the commutation properties of the boson field 
operators, we first calculate the matrix element   

N!<S0Of>>= 

2,^v2,
mnö(T}v-Xl)ö(Tl^-x2)ö(in-Xl)ö(im-x2)2(ij)^,ij6(Tlj-ii). (38) 

Here the prime excludes \i=v and m=n in the summations and excludes i=m, i=n, j=ji and j=v in 
the product. The summation 2(i j) runs over all permutations of the remaining N-2 values of i and 
j. On this basis we now calculate the complete matrix element 

<flOlf> = [1/NCN-D] 2 VvZ WdVWWÄ 
qv'^^^^ilv^C^m^d^Tlv-x l)ö0vx2)ö(Sn-x i)ö(im-X2). (39) 
= [1/N(N-D] 2 Vv2*mn V(x2)<Pv*(xi)(ftn(xi)(ftl(x2) 

The one-particle states are spherical waves emerging from the scattering center located at 
x=0: 

cp(x) = (ax)eiKx[l+2klb(k,l)e-iqxa+k(,]. (40) 

Here C is an amplitude factor, K the boson wave vector magnitude, y = b(k,l) the bremsstrahlung 
amplitude for photons of wave vector k and polarization 1, while a+k i is the corresponding photon 
creation operator, allowing the photon state to be created from the vacuum if Eq. (40) is inserted 
into Eq. (36). The momentum magnitude loss q=Mck/hK-Mf/hK is necessary for energy 
conservation in the Bremsstrahlung process. Substituting Eq, (40) into Eq. (39), we obtain 

<flOtf> = IC/x|4{N(N-l) + 2(N-l)2killb(k,l)|2[l+cosq(x1-x2)]}, (41) 

where we neglected a small term of higher order in b(k,l). To perform the angular part of the 
summation in Eq. (41), we calculate the current expectation value of the state in Eq (40) and 
compare it to the well known cross section without and with bremsstrahlung 

j = (hK/Mx2)[l + 2kllb(k,l)|2] = j0[l +/aAdf/f], (42) 

where the quantum fluctuations have disappeared, where a-e2/hc is the fine structure constant, 
aA=(2a/3jt)(Av/c)2 is the fractional bremsstrahlung rate coefficient, also known in QED as the 
infrared exponent and the 1/f dependence of the bremsstrahlung part displays the well-known 
infrared catastrophe, i.e., the emission of a logarithmically divergent number of photons in the low 
frequency limit. Here Av is the velocity change h(K-K0)/M of the scattered boson, and f=ck/2* 
the photon frequency. Eq. (41) gives 

<flOlf> = IC/x|4{N(N-l) + 2(N-l)(/aAdf/f)ri+cosq(xi-x2)]}, (43) 

which is the pair correlation function, or density autocorrelation function along the scattered beam 
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with df/f=dq/q. The spatial distribution fluctuations along the scattered beam will also be observed 
as fluctuations in time at the detector, at any frequency f.   According to the Wiener-Khintchine 
theorem, we obtain the spectral density of fractional scattered particle density p, (or current j, or 

cross section o) fluctuations in frequency f or wave number q by dividing the coefficient of the 
cosine by the constant term N(N-1): 

p-2Sp(f)=j-2Sj(f) = o-2So(f) = 2aA/fN  [or=2aA/f(N-l)forfermions],    *      (44) 

where N is the number of particles or current carriers used to define the current j whose 
fluctuations we are studying. Quantum 1/f noise is thus a fundamental 1/N effect 

The exact value of the exponent of f in Eq. (44) can be determined by including the 
contributions from all real and virtual multiphoton processes of any order, and turns out to be aA- 

1, rather than -1, which is important only philosophically, since aA«l. The spectral integral is 
thus convergent at f=0. 

For fermions we repeat the calculation replacing in the derivation of Eq. (38) the 
commutators of field operators by anticommutators, which finally yields in the same way 

p-2Sp(f) = j"2Sj(f) = o-2So(f) = 2aA/f(N-l), (45) 

which causes no difficulties, since N^2 for particle correlations to be defined, and which is 
practically the same as Eq. (44), since usually N»l. Eqs. (44) and (45) suggest a new notion of 
physical cross sections and process rates which contain 1/f noise, and express a fundamental law 
of physics, important in most high-tech applications. 

5. Derivation of the coherent quantum 1/f effect 

The present derivation is based on the well-known propagator Gs(x'-x) derived 
relativistically [27-31] in a new QED picture required by the infinite range of the Coulomb 
potential. The corresponding nonrelativistic form was provided by Zhang and Handel [32]: 

-i<4>orrtps<x*)^ä-(x) l3>o> - öss. Gs(x*-x) 

= (i/V)2( expi[p(r-r')-p2(t-t')/2m]/ri }np,s 

P 
x{-ip(r-r*)/ri +i(m2c2+p2)i/2(t-t,)(c/ri )}«/*. (46) 

Here a is again Sommerfeld's fine structure constant, nPjS the number of electrons in the state of 

momentum p and spin s, m the rest mass of the fermions, 6SS' the Kronecker symbol, c the speed 
of light, x=(r,t) any space-time point and V the volume of a normalization box. T is the time- 
ordering operator which orders the operators in the order of decreasing times from left to right and 
multiplies the result by (-l)p, where P is the parity of the permutation required to achieve this 
order. For equal times, T normal-orders the operators, i.e., for t=t* the left-hand side of Eq. (46) 

is i<4>0^(x) ,»i>s,(x,)l3>o>' The state 3*o of the N electrons is described by a Slater determinant of 
single-particle orbitals. Eq. (46) is exact at large t-t\ or low frequency. 

To calculate the current autocorrelation function we need the density correlation function, 
which is also known as the two-particle correlation function. The two-particle correlation function 
is defined by 

<<VIW(x) iMxty^x') %.(x')l<E>o> = <3>oKltf(x) ips(x)l4>oX^0^(x') %<x')l<I>a> 

- <4>orr^s-(x
,)^(x) «^p^o^OO^*') l<Do>. (47) 
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The first term can be expressed in terms of the particle density of spin s, n/2 = N/2V = «J>0ltl#(x) 

i|>s(x)l4>o>, while the second term can be expressed in terms of the Green function (22) in the form 

Ass'(x-x') -«DoWx) tltf(x') HvCx'tystolOcP* = (n/2)2 +öss- Gs(x
,-x)Gs(x-x'). (48) 

The "relative" autocorrelation function A(x-x') describing the normalized pair correlation 
independent of spin is obtained by dividing by n2 and summing over s and s' 

A(x-x') = 1 - (l/n2)2G s(x-x')Gs(x'-x) 
s 

= 1 - (l/N2)^  2i expi[(p-p')(r-r,)-(Ep-Ep-)(t-t,)]/ft }np snp-tS 

s   pp' 
x{p(r-r»)/K -(m2c2+p2)l/2(t-f)(c/ri)}«'* w    - 

x{p,(r'-r)/ri -(nA&-p,2)1/2(t,-tXc/Ii)}«/*. (49) 

Here we have used Eq. (46). We now consider a beam of charged fermions, e.g., electrons, 
represented in momentum space by a sphere of radius pp, centered on the momentum p0 which is 
the average momentum of the fermions. The energy and momentum differences between terms of 
different p are large, leading to rapid oscillations in space and time which contain only high- 
frequency quantum fluctuations. The low-frequency and low-wavenumber part Ai of this relative 
density autocorrelation function is given by the terms with p = p' 

A,(xO = l-(l/N2)2 2np>s 

s   p 
xlp(r-rO/li -(m2c2+p2)l/2(t-t')(c/ri )l2«/* (50) 

- 1 - (l/N)lp0(r-r')/h -nu^t/ft |2«/* for pF«lp03-mc2x/zl. (51) 

Here we have used the mean value theorem, considering the 2a/jt power as a slowly varying 

function of p and neglecting pQ in the coefficient of x ■ t-t1, with z ■ Ir-r1!. The correlations 
propagate along the beam with a group velocity given by the average velocity pc/m of the particles 
in the beam, and with the phase velocity of c2/v. Denoting 6 ■ It -p0(r-r,)/mc2l, and using a well 
known identity for the last step [32], we obtain from Eq. (51) the form 

Ai(x-x') = 1 - (l/N)lmc20/fi )|2<*/* = 1 -(1.25/N)ie|2«/* = i -(l.25/N)e(2«/™)lne 

- l-(1.25/N)[l+(2a/:t)ln0] = 1 - (2.5/N) + (1.25/N)[l-(2a/jt)lne] (52) 

00 

~(N-2.5)/N +(1.25/N)e-<2a/3l),ne = (l/N)-fN-2.5+(2.5a/jtcosa) fcos (O0dco/ü)1-2ct/jl>. 
o 

This indicates a or 1+2«/jl or 1/f spectrum and a l/(N-2.5) dependence of the spectrum of fractional 
fluctuations in density n and current j. The total error corresponding to the two linear 
approximations of exponentials in Eq. (52) is less than 1%, provided lln0l<2O, or (250,000)"1 

hours < 101 < 250,000 hours. Here 0=6/Is and w is the circular Fourier frequency in rad/s. We 
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have used [Is me2/h )]2a/w « 1.25; this accounts also for the presence of the number 2.5 instead of 
the more normal number 2 in the final form. The form we have chosen here is more convenient for 
applications: The equivalent normal form would have been 

00 

Ai(x-x') «(l/N){N-2+(2a/jtcosa)/[mc2/hci) ]2a/n cosa>e doa/w}, (53) 
o 

in which the error caused by the two linear approximations of exponentials would have been of the 
order of 20%, and in which the fractional power would also have been neglected in the integrand 
for all purposes except for the theoretical question of the integrability of the I/o) spectrum.   The 

fractional autocorrelation of current fluctuations öj is obtained by multiplying Eqs. (52-53) on both 
sides with (epo/m)2, and dividing by (enpo/m)2 which is the square of the average current density 
j, instead of just dividing by n2. So it is the same as the fractional autocorrelation for quantum 
density fluctuations. The last form of Eq. (52) for the universal coherent quantum- 
electrodynamical chaos process in electric currents finally becomes 

S6j/j(co) - [2.5a/jtco(N-2.5)][(D]2a/* - 2.5a/jiwN = 0.0058/coN. (54) 

The spectral density resulting from Eq. (53) coincides with the result 2a/jifN, derived 
directly earlier [14] from the coherent state of the electromagnetic field of a physical charged 
particle. The connection with the conventional quantum 1/f effect was discussed in Sec. II. 1. 

Being observed in condensed matter in the presence of a constant applied field, these 
fundamental quantum current fluctuations are usually interpreted as mobility fluctuations. Most of 
the conventional quantum 1/f fluctuations in physical cross sections and process rates are also 
mobility fluctuations, but some are also in the recombination speed or tunneling rate. 

6. Discussion and conclusions 

Consider now the physical basis of the connection with the conventional quantum 1/f 
effect. The energy of the collective (drift) motion of the current carriers has a magnetical 
component, which we consider coherent, because the field contributions of the individual current 
carriers are additive 

Em = /(B2/&r)d3x = [nevS/c]2ln(R/r). (55) 

Here n is the concentration of current carriers, v their drift velocity, c the speed of light, r the 
radius and S the area of the cross section of the cylindrical conductor or semiconductor sample 
considered. There is, however, also a kinetic energy contribution, which is incoherent, because 
the kinetic energies of the drift motion of the current carriers must be added to get the total kinetic 
energy, rather than their momenta. 

Ek = I]mv2/2 = nSmv2/2 = Em/s. (56) 

The "coherece ratio" 

s = Em/Ek = 2ne2S/mc2ln(R/r)-2e2N7mc2, (57) 

has been introduced here for convenience, where N' = nS is the number of carriers per unit length 
of the sample and the natural logarithm ln(R/r) has been approximated by one in the last form. We 
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expect the observed spectral density of the mobility fluctuations to be given by a relation of the 
form 

(l/^S^f) = [l/(l+s)][2aA/fN] + [s/(l+s)][2aMN] (58) 

which can be interpreted as an expression of the effective Hooge constant if the number N of 
carriers in the (homogeneous) sample is brought to the numerator of the left hand side 

aH = [l/(l+s)]aHconv + [s/(l+s)]aHcoh- (59) 

In this equation aA=2a(Av/c)2/3jt is the usual nonrelativistic expression of the infrared 
exponent, present in the familiar form of the conventional quantum 1/f effect. This equation is 
limited to quantum 1/f mobility (or diffusion) fluctuations, and does not include the quantum 1/f 
noise in the surface and bulk recombination cross sections, in the surface and bulk trapping 
centers, in tunneling and injection processes, in emission or in transitions between two^solrds. 

Note that the coherence ratio s introduced here equals the unity for the critical value N' = 
N" = 2«l()12/cm., e.g. for a cross section S = 2«10~4 cm^ of the sample when n = 10^. For 
small samples with N'«N" only the first-term survives, while for N'>N" the second term in Eq. 
(59) is dominant. 

The conventional and coherent Ql/fE was successfully applied FETs, HFETs, BJTs, and 
HBTs, as well as to quartz resonators and amplifiers. In conclusion: 

— The quantum 1/f effect appears to generate entropy, but this is only because we do not 
observe the negative conditional entropy contribution of the emitted soft photons. 

— The quantum 1/f effect contains Planck's constant in the denominator and diverges in the 
classical limit. 

— The quantum 1/f effect represents a new aspect of quantum physics. 
~ The quantum 1/f effect is a form of quantum chaos, arising only from spontaneous 

bremsstrahlung. 
— The quantum /f effect limits most high-technology applications and devices.    Its 

knowledge allows us to optimize them. 

VI. CHARACTERISTIC FUNCTIONAL OF PHYSICAL THERMAL NOISE 
- WHICH INCLUDES EQUILIBRIUM QUANTUM 1/f NOISE - 

1. Introduction 

In a previous paper [33] the characteristic functional of quantum 1/f noise was derived. 
This result was applicable to quantum 1/f noise in any cross section or process rate, and in currents 
or voltages. In another paper [34] the application of quantum 1/f noise to thermal equilibrium 
noise was performed, and the quantum 1/f Nyquist theorem was formulated. Deviations from the 
Gaussian form of thermal noise were expressed [34],[35] in terms of the characteristic function. 

The Quantum 1/f Effect (Ql/fE) is a fundamental fluctuation phenomenon present as 
coherent Ql/f Noise 2a/jtfN in electrical currents of any nature and present as conventional Ql/f 

Noise 2aA/fN in the physical cross sections and process rates (PCS&PR). The PCS&PR are 
defined as the scattered current, or the outgoing current resulting from a process, including its 
quantum fluctuations acquired due to the interaction with the electromagnetic field, all referred to 
the unit of incoming flux, which is one particle per second per cm2. The usual notion of cross 
section or process rate is a quantum-mechanical expectation value which does not contain the 
quantum fluctuations. In the present report the nature of the quantum 1/f fluctuations introduced 
by us in 1975 is investigated and described as a form of quantum chaos. 
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Both Coherent and Conventional Quantum 1/f Noise are peculiar quantum effects. They 
contain Planck's constant only in the denominator, as part of the fine structure constant to which 
both are proportional. This implies that they increase without upper bound when we approach the 
classical limit by letting fi go to zero. One is left with the impression that the classical limit of the 
quantum 1/f effects does not exist. 

At this point it is useful to remember that the quantum 1/f approach originated from the 
classical homogeneous and isotropic turbulence theory in an unbounded plasma of, electrons and 
holes [36], [37], and was introduced as the result of prolonged quantization efforts applied to this 
classical theory. The classical theory corresponded to infinite noise power in any finite frequency 
interval. Therefore, if we accept quantum 1/f noise as the quantum manifestation of classical 
turbulence, its infinite classical limit no longer confronts us with conceptual difficulties. 
Moreover, the physical nature of quantum 1/f noise becomes connected directly to the nature of 
classical turbulence which is in practice caused by the instability of laminar flow when a certain 
critical value of the Reynolds number is surpassed. 

Being governed by the Navier-Stokes equations, classical turbulence, naturally obtained 
from the instability of laminar flows, is in fact deterministic, in spite of its stochastic appearance. 
Therefore we use the word "chaos" to describe its true nature. The transition from laminar flow to 
turbulence is one of the seven known routes to chaos, the oldest known route in fact. The chaotic 
nature of turbulence characterizes turbulence as a deterministic process if finite dimensionality 
dependent on the bandwidth of the turbulent frequencies observed. In the same way, quantum 1/f 
noise, being governed by the Schrödinger Equation for the chaotic wave fields, is in fact 
deterministic; it represents the oldest known form of quantum chaos. The finite dimension of 
quantum 1/f noise was calculated [38] on the basis of a 1-dimensional model of the quantum 1/f 
theory. 

In conclusion, quantum chaos is defined here as the quantum manifestation of classical 
chaos. The latter, in turn, is defined as the quasistationary state eventually reached by a system 
after instabilities of the laminar state have triggered the transition into another state characterized by 
time-dependent values of the dynamical parameters, with a probability distribution law which is 
stable in time. Our notion of quantum chaos is visualized by the deterministic evolution of the 
seemingly stochastic Schrödinger field. 

As we know, however, the wave function is not directly observable, but rather is a means 
of calculating the expectation values of observable quantities. Even if the wave function is well 
defined, due to its probabilistic interpretation, we obtain random, or stochastic fluctuations of the 
local physical parameters of the system, superposed on the deterministic-chaotic background. We 
will consider this stochastic component irrelevant for the following reason: the stochastic element 
enters only because we ask for properties which the system does not have, i.e., because we asked 
a meaningless question. In quantum mechanics such meaningless questions can be made 
artificially meaningful by imposing the corresponding properties on the system from outside in the 
measurement process. This does not mean the system had this property all along, it had instead 
other, complementary, parameters which were better defined before, but lost their definition in the 
measuring process. The physical meaning of the superposed stochastic component is that it 
represents the shot noise, which is well known, given by the spectral density of 2el, and which is 
not the object of our studies. It is worth mentioning, however, that it is a organical component of 
the noise process which has a deterministic (chaotic), as well as a superposed stochastic 
component 

The Ql/fE is caused by the infinite range of the electromagnetic interaction, i.e., of the 
Coulomb field. Any charged particle is thus always in interaction with all other arbitrarily distant 
charges, and this causes the particle to have an energy, which is not well defined, i.e., a mass, and 
therefore a relativistic mass shell, which is not sharp. Mathematically, this energy uncertainty is 
expressed by the fact that the charged particle consists of the bare particle plus its electromagnetic 
field which in the rest system is just the Coulomb field. The latter is characterized by a well- 
defined electric field and vector potential.    A Fourier transformation then tells us that the 
electromagnetic field oscillators for any wave vector k and polarization X have a well defined 
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phase, and are therefore in coherent states. The latter, in turn, are states of indefinite energy, first 
introduced by Schrodinger in the early days of quantum mechanics, and later used by Glauber to 
describe coherent states of the electromagnetic field. 

How can we express mathematically the stochastic fluctuations and their deterministic- 
chaotic background? Heisenberg^ equations of motion for the density matrix of the system of 
charged particles whose quantum 1/f" current fluctuations are under consideration and of the 
electromagnetic field modes coupled to them provide the desired description. The solution should 
be given by the characteristic functional of the current fluctuations. The characteristic functional of 
conventional quantum 1/f noise j(t) = J(t) - <J> affecting the current I=<J> has been shown [6] to be 

H[x(e)] = exp[-aA(I2/N)/(E/E0)aAlx(e)l2de/£]. (60) 

Here aA is the infrared exponent ctA=(4a/3rt)<(Av/c)2>, which is known to enter the expression 
of both the basic quantum 1/f noise formula and the characteristic functional of quantum 1/f noise 
in two ways: as a coefficient and as an additional exponent of the frequency f.  Sommerfeld's fine 
structure constant a=e2/fi c =1/137 is well known, and so is the Boltzmann constant kß. Eq. (60) 
gives the characteristic functional of 1/f noise for a sample containing N scattered current carriers 
with a velocity change <(Av)2> caused the scattering process. Eq. (60) also approximates the 
characteristic functional of 1/f noise from a solid-state sample containing N current carriers with an 
average velocity change <(Av)2> in the scattering processes which determine their mobility. 

The present report performs the final step in the study of thermal noise with infrared 
radiative corrections, by calculating the characteristic functional of physical thermal noise. We call 
it "physical" because we refer to the actually observed thermal equilibrium (Johnson) noise, rather 
than to the strictly Gaussian noise expected from the Nyquist formula without infrared radiative 
corrections. The small quantum 1/f contributions come in as time-dependent infrared radiative 
corrections, required by the interaction of the current carriers with the electromagnetic field, or by 
the reaction of the bremsstrahlung back on the current which has produced it. Knowing the 
characteristic functional of a process is the best we can do, the highest level and most 
comprehensive and complete description possible for a random process. 
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2. Amplitude Distribution and Characteristic Function 

In terms of current fluctuations in equilibrium, to derive the characteristic function of the 
physical thermal noise current variable £, we express it in terms of the unmodulated theoretical 
Nyquist noise current variable x: 

£ = x(G/G0)1/2 = x + xy, (61) 

where y=8G/2G0 is the fractional quantum 1/f fluctuation in the conductivity G=60+8G of the 
conductor whose thermal equilibrium current fluctuations we are considering. Let the quantum 1/f 
noise variable y obey a Gaussian amplitude distribution of dispersion 02, and x one of dispersion 

a\. We prove now that in terms of the zero-order Bessel function of imaginary argument, the 

product z=xy will have an amplitude distribution P(z)=(l/7caia2)JC0(z/aiG2) which has an 
elementary characteristic function 

X(v) = (l+ai2a2
2v2)-1/2. (62) 

In order to derive the amplitude distribution of z = xy, we introduce T| = In z, d = In x and 

ß = In y. From r\ = a + ß we obtain the distribution 

P"(ri)dr| = drJp'i(a)P'2(Ti-a)da 
= (2dTi/27iaia2)Jexp[-(e2a)/2ai2+a]exp[-e2(T1-a)/2a22+(ri-a)]da 

00 

=(e^l dr\/2no\02) Jexp{-|en /G1G2] coshejde ^e1! dri/rcaia^KoteWa^),      (63) 
-00 

where P'(a) and P'2(ß) are derived from Gaussians of dispersion G\ and G2 respectively, e = 2a• - 
T) + ln(o"2/cJi), and K is the modified zero-order Bessel function.  Returning to the real variable z, 

we obtain from P"(n)dri = P(z)dz 

P(z) = (l/7COi02)Ko(z/oi02). (64) 
A Fourier transform shows that the corresponding characteristic function is elementary: 

Z(v) = (l+Qi2G2
2v2)-l/2. (65) 

This is just what we wanted to prove. 
Our next step is the calculation of the characteristic function of £.    Due to the mutual 

dependence of x and z, the characteristic function of £ differs from the product of the characteristic 
functions of x and z. We obtain instead the amplitude p.d.f. 

00 

Iß)=/Pl(x)P2ß/x-l)(l/lxl)dx 

= [exp(-l/2a2
2)/2Ka1a2]/exp[-x2/2ai2 - £2/2x2a2

2 + £/xa2
2]dx/lxl 

= [exp(-l/2G2
2)/27caia2]/exp[-x2/2a1

2 -^2/2x2a2
2]cosh(^/xG2

2)dx/x , (66) 
0 

which we have written down directly, but which can also be obtained by substituting (ea - l)2 for 
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e2cx in Eq. (63). This distribution tends to a Gaussian in the limit O2-*0> but differs slightly from 
a Gaussian in general. The skewness is zero, but the kurtosis exhibits a small deviation from the 
Gaussian amplitude p.d.f.. 

By performing a Fourier transform of Eq. (66) we find again that the characteristic function 
of the total physical thermal noise is elementary 

X(k) = (1 + k2Ci2G2
2)-1/2 exp[-k2Gi2/2(l + k2ai2a2

2)]. (67) 
while the amplitude distribution itself can not be expressed in elementary functions.   Here Ci2= 

F 

4kTGB and G22=(aA/2N)J(e/£0)cxAde/£], with B=F-f representing the bandwidth considered. 
f 

In the remaining part of this section we derive the characteristic functional of thermal noise 
including thermal equilibrium quantum 1/f noise in the conductance G.   We first familiarize the 
reader with characteristic functionals in general. 

3. Characteristic Functional 

The complete characterization of a random process j(t) is given by its characteristic 
functional [39] 

H[x(t)] = <ei0.x)>. (68) 

where j(t) is in our case the current (or voltage, or fractional conductance) fluctuation j(t) = J(t) - 
<J>, x(t) is the argument function of the functional, and the scalar product in Hilbert space is 
defined as 

T 

0,x) = Jj*(t) x(t)dt. (69)    • 
0 

Here T is the interval of observation of the fluctuations, i.e., the length of the sample considered 
from the stationary random process at hand.  Particularly simple, the characteristic functional of a 
Gaussian process is [39] 

HG[x(t)] = exp[-(l/2)<(j,x)2>]. (70) 

In particular, for thermal short-circuit current fluctuations in a resistor of conductance G 
described by the simple Nyquist formula with ai2 = 4kTGB, the characteristic functional is 

F T 

H[x] = exp[-2GjkBTlxfl2df ] = exp[-2kBTGB Jlx(t)l2dt], (71) 
f 0 

where Xf is the Fourier-transformed argument function. Here the two-sided frequency integral is 
limited to the allowed bandwidth B, and the time integral to the interval T of observation.   Since 
B->°°, kßT must be replaced by hf/[ehf/kT- 1] and included in the frequency integral, while the 
time integral must also include the Fourier-transformed Planck kernel. 

The characteristic functional of quantum 1/f noise affecting the conductance G has been 
shown [6] to be 

H[x(e)] = exp[-aA(G2/N)J(e/e0)aAlx(e)l2de/e]. (72) 

Here aA is the infrared exponent aA=(2a/3rc)<(Av/c)2>, which is known to enter the expression 
of both the basic quantum 1/f noise formula and the characteristic functional of quantum 1/f noise 
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in two ways: as a coefficient and as an additional exponent of the frequency f. Sommerfelds fine 
structure constant ot=e2/ri c =1/137 is well known, and so is the Boltzmann constant kB. Eq. (72) 
gives the characteristic functional of 1/f noise for a sample containing N current carriers with an 
average velocity change <(Av)2> in the scattering processes which determine their mobility.  Since 

we are interested in the variable y=5G/G0, we must replace G by 1/4 in Eq. (72). 
For each value of the frequency we now use Eqs. (71) and (72), repeating the steps which 

led to the derivation of Eq. (65). This yields the characteristic functional of the term z=xy in Eq. 
(61) 

Z[v(f)] = exp[-(l/2)Jln(l + ai2a2
2v2)df] 

= exp{-(l/2)Jln[l + 2kBTG(aA/fN)(f/f0)
aA v2(f)]df}. (73) 

According to Eq. (61) we now have to add the Nyquist term x. Repeating for every frequency f 
the steps which led us to Eq. (67), we obtain now the characteristic functional of physical thermal 
noise C, in the form 

F[k(f)] = exp{-(l/2)Jln[l + 2kBTG(aA/fN)(f/f0)aAk2(f)]df} 
exp{-2kBTG|k2(f)[l +2kBTG(aA/fN)(f/f0)

aAk2(f)]-1df}. (74) 

Eq. (74) gives the characteristic functional of physical thermal noise for a sample containing N 
current carriers with an average velocity change <(Av)2> in the scattering processes which 

determine their mobility, resulting in a well defined infrared exponent aA. 

VII. A BRIDGE BETWEEN COHERENT AND CONVENTIONAL 
QUANTUM 1/f NOISE 

In this section, a certain mass distribution is defined which allows arbitrary physical 
electronic propagators with infrared radiative corrections of any order included corresponding to 
given Hamiltonians and boundary conditions to be approximated by an integral over the product of 
this mass distribution with the corresponding well-known electronic propagator without infrared 
radiative corrections. 

Coherent Quantum 1/f Noise Theory [14] was developed in 1982-83, nine years after 
Conventional Quantum 1/f Noise [1] was introduced. Both are forms of the same infrared 
divergence phenomenon and are described by simple universal formulas involving Sommerfeld's 
fine structure constant a=e2/K c, but the coherent Ql/f formula 2oc/7tf is particularly simple. 
Conventional Ql/f Noise is always present in any physical process rate or cross section, but in 
devices which are sufficiently large, the larger coherent Ql/f effect dominates the 1/f current noise. 
Since the conventional Ql/f effect is associated with individual carriers and the coherent Ql/f noise 
with their collective drift motion, a physical interpolation formula [15] was developed in 1985, 
superposing the two results in the same proportion as the kinetic and magnetic energies of the drift 
motion of the carriers. 

As was pointed out [13] (See also the end of Sec. V above), the coherent Ql/f effect can 
also be derived from a quantum-electrodynamic propagator, but both this and the 1983 derivation 
are applicable only for a sufficiently large sample or device in which the energy of the collective 
magnetic field of the drift motion far exceeds the sum of the additional kinetic energies of the 
carriers due to their drift. For smaller samples we will attempt in this report to construct a 
generalization of coherent Ql/f noise which is based on the physical interpretation of a charged 
particle as a quantum object with indefinite energy or mass, specifically, with a fuzzy mass shell. 

To achieve this objective, we represent the non-relativistic form [32] of the new quantum- 
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electrodynamic propagator as a superposition of classical propagators, defined by an unknown 
mass distribution p(|i) which describes the fuzzy mass shell: 

im v2 im v 
expÜT [v.(r-r')-(c2+y )(t-f)]} }•{ T [▼•(r-r'Mc'+T )(t-f)] l*"1 

oo 

= /dp. pC^expiif-tv-Cr-rXc^yXt-f)]}}.    .      (75) 
o 

1 V2 

Let u = ^ [v-(r-r')-(c2+2")(t-t')]. This allows us to simplify the above equation, in the form 
oo 

Sd\i p(\i).e^u = eimu-(imu)aJi:. (76) 
o 

When we use (i'= [L-m, the equation becomes 
oo 

JV p'(|i')-e^'u = (imu)«"1. (77) 
-m 

Because p'(U.') is different from zero only around |Li'=0 or |i=m , we can extend the domain of 
integration, 

oo 

JV p'([i,)-ei,1,u = (imu)«771. (78) 
-OO 

Let us take the derivative with respect to u. This yields 

/dp' p,(u.>ei^'u-iu.' = - 

a 

-(im)0^ 

ul-a/7c (79) 

We can further simplify the above equation with the notation u.'.p'(H')= X(u,') and get 
a 
_ma/7C 

/du' X(p-')-eitl,u = — 
(iu) l-a/7t (80) 

-oo 

We can determine X((i') by taking the Fourier transformation of the right hand side, 
a 

oo      '«m ,    °° 
c     2TC

2 am«7*   c     e-iu^* 
w - /*> ^rsr*"" ■ i^> ^ <81) 

-oo -oo 

0 oo 
am""1   , r     cos(|x'u)+isin(^'u)    r     cos(|i'u)+isin(ix'u\ 

= ^I^Udu -^ +Jdu ^ ) 
-oo O 

OO CO 

am""1   / r cos(-p.'u')+isin(-u.'u')    r     cos([j.'u)+isin(|Li'u\ 
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am«"1 , r      -cos(ii'u')+isin(u\V) r     cos(n'u)+isin(n'u\ 
^;rsK{«ta ^—<-i)-*+/o« —^—) 

am«"1 
oo oo 

r ,   , \ r     cos(ii'u)      t ,   , ^ r     sin(|Tu) -. 

27C2i1-a/7lL «       u1"«7* u 

am 

o 
a/71 

r ,     v r(a/ic) , ,   . N r(a/7t) n 
[(l-C-l)!-^).-^—^os(a/2) + iCl+C-l)1-^).—-—.sin(a/2)] (82) 

2ft2jl-a/7t LV     V     ^ M,a/7t Ll'a/jI 

(for }i' > 0),   and 

am«"1   r ,   , x r(a/7t) , ,   , x r(a/jc) T 
[(^(.Di-oAiX-L-Acos(a/2) - Kl+M)1-^).——.sin(a/2)] (83) 

2rc2i1-a/7C |i'a/7t ^i'a/71 

(for \i' < 0). -    * 

Because both l+(-\)haJn and sin(a/2) are much smaller than H-l)1"0^71 and cos(a/2), we can just 
use 

,   . N ar(a/7c)cos(a/2)   m x„/7t 
X(u') =(l-(-l)i-^).      J.^       •(- r • (84) 

for all practical purposes. We thus conclude that the mass distribution function has to be 

ar(g/7E)cos(a/2)     m^" 

^ji-a/Tt        '((Li-m)1 PM = 3^ V„ -M+a/n ■ <85) 

This is a remarkable result.   It allows us to approximate the effect of infrared radiative 
corrections on any electronic propagator by multiplying it by p(u\) and integrating over fi as was 
done with the free particle propagator on the right-hand side of our first equation above. The result 
will represent an approximation of the physical electron's propagator corresponding to the problem 
at hand, i.e., an approximation of the physical propagator including the infrared radiative 
corrections, which corresponds to the given potential in which the electron has to move, and which 
satisfies the given boundary conditions. 

VII. APPLICATION OF HIGH e PARAMAGNETIC AND FERROELECTRIC 
MATERIALS TO HIGH-TRANSCONDUCTANCE HFETs WITH 

LOW NOISE AND LOW GATE CURRENT 
1. Introduction 

The main problem in high-transconductance FETs is the presence of a considerable gate 
leakage current that loads the input and reduces the power amplification coefficient. The problem 
has become particularly serious in InGaAs Heterostructure FETs. 

Indeed, to achieve a high transconductance, the gate capacitance must be high, and the gate 
insulation must be thin. This leads to tunneling currents through the gate insulation. 

A detailed examination of the quantum-mechanical tunneling problem by these authors in 
cooperation with F. Schuermeyer in 1993-1996 shows that the only way to reduce the gate 
tunneling current without sacrificing the gate capacitance is to use materials with high dielectric 
constant er as insulators under the gate. 
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It is obvious that only amorphous ferroelectric materials with negligible remanent 
polarization and high coercive field are useful if we want to avoid the hysteresis effect, and are 
interested only in suppression of the leakage currents in high transconductance devices. For 
certain applications, hysteresis in the response of the device is desirable, and should be achievable 
by slight modifications in the fabrication process.  The present report analyzes the possibility of 
using ferroelectric and paraelectric high 8 gate insulators, including also noise considerations, in 
particular quantum 1/f noise. 

2. General Considerations 

An increased gate capacitance is particularly desirable at lower frequencies, because it leads 
to higher transconductances of the FET, without compromising its desirable large input impedance. 
At high and ultrahigh frequencies, however, a very large gate capacitance C is less desirable, 
because it essentially shorts the gate to the channel and requires large capacitive gate currents and 
signal power input levels at the achievable fT and fmax values. The natural solution that allows for 

a smaller frequency dependence of the input admittance JODC is a ferroelectric gate insulation. 
Indeed, at low frequencies, it could increase the gate capacitance and device transconductance by a 
factor of 102, while at higher frequencies, where such a large capacitance could be harmful, the 
dielectric constant decreases to intermediate values, allowing for operation at the highest 
frequencies with a reasonable input impedance. This is the main advantage of a ferroelectric gate 
insulation. 

Unfortunately, the ferroelectric introduces its own resonances and their characteristic 
frequencies, as well as dissipation.    Furthermore, if leakage through the ferroelectric is still 
occurring, it leads to a normalized quantum 1/f noise coefficient larger by a factor of 106 than what 
we would get without piezoelectric coupling of the current carriers. 

A possible way for reducing the remaining frequency dependence of the gate capacitance is 
the use of two or more ferroelectric layers. This introduces additional resonances and resonances 
corresponding to the space-charge relaxation at the interfaces. However, in return, each of these 
resonances could be weighted down so that the resulting frequency dependence will just present 
small nonuniformities which cause negligible spectral distortion in amplifiers. 

3. History 

The effect of ferroelectric polarization on insulated-gate thin film transistor parameters was 
first studied by Zuleeg and Wieder [40] as a device for non-volatile memory design. They applied 
a 1 mm thick film of ferroelectric TGS (tri-glicine-sulphate) on one side of a 5.000Ä CdS film as 
gate insulation, the other side of the film being insulated by 1000Ä of Si02 from an Al- gate. Gold 
was used for the gate applied to the TGS, the source and the drain contacts. Depending on the 
polarization state of the TGS, controlled by the gold gate voltage, and by its previous voltage 
history, one gets various sets of drain characteristics. In the metal-ferroelectric semiconductor 
structure, proposed later by Wu [41], a thin film of ferroelectric Bi4Ti30i2 was replacing the oxide 
of a MOSFET. This was suggested as a new ferroelectric memory device. The materials PZT, 
i.e., PbZrxTii.x03 [42] and LiNbC>3 [43] were investigated as ferroelectric gate insulators, as well 
as other materials [44]. However, all these materials contain oxygen, and will cause oxidation of 
the compound semiconductors. 

On the other hand, the nature of the leakage current was investigated in HFETs by 
Schuermeyer et. al., [45]. They focused primarily on the thermal activation of carriers from the 
channel over the barrier separating them from the gate. These authors found that the density of the 
thermal activation current reached a maximum at an intermediary region, closer to the drain than to 
the source. In the present report, we illustrate the application of ferroelectric or high e materials to 
the case of the InGaAs/AlGaAs/GaAs and InGaAs/InAlAs/InP  enhancement-mode  HFETs 
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fabricated and studied by Schuermeyer et. al., [45]. 

4. Approach 

We will consider the ferroelectric material BaMgF4 as a leading candidate for coating the 
barrier layer, applying it in its amorphous form at 450° C on the external AlGaAs barrier layer, 
separating the channel from the gate of the HFET.  In this form it has negligible hysteresis and is 
characterized by a dielectric constant £i=35. The deposition temperature is not too high for the 
HFET. The AlGaAs barrier thickness d can be reduced to 15 nm and the BaMgF4 layer needs to 
be only 20 nm thick. Fig. 1' and 2' show the approximate device structure and the conduction 
band configuration for an n-channel HFET. 

To further clarify our approach, we use the simple FET expression for the intrinsic 
transconductance gm 
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Fig. 1': HFET structure. 
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(86) 

(87) 

Here CG is the gate capacitance, tc the effective channel transit time, e the effective permittivity of 
the gate capacitance, L the gate length, W its width, tins the effective distance between gate and 

channel, equivalent with a total insulation thickness, |j. the effective channel mobility, VD the 
source-drain voltage, and vm the maximal drift velocity obtained in the high field regime of the 
channel. 

From Eqs. (86) and (87) we see that by increasing tins by a factor A, and e by a factor A4, 

gm will increase by a factor of A,3. At the same time the leakage current caused by tunneling 

through the barrier will become negligible for all practical purposes for A>2, because the tunneling 
probability T«l will be replaced by <T2. Indeed, an additional decrease of the gate current will be 
caused by the reduction of the electric field present throughout the barrier. 

The unit current gain frequency, ft, is not affected, being approximated by 

fT=l/27ttc. (88) 
However, the maximum frequency of oscillation, fmax, is given by 

fmax = (rV2)(gm/gout)1/2, (89) 
where gout is the output conductance that is not affected by CG or by A,.  The maximum frequency 

of oscillation is therefore increased by A3/2, provided there is no decrease in e at f=fmax-   For 
instance, with A=1.41, increasing tins 1.41 times and e 4 times will increase gm 2.82 times, fmax 

1.65 times and stop the gate current. Actually, there will be a considerable decrease of e at high 

frequencies, and therefore, we expect fmax to increase less than predicted by the factor A3/2. 

5. BaMgF4 Technology 

The ferroelectricity of BaMgF4 was discovered in 1969.   However, this material was not 
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fabricated as a thin film till 1989, and was first deposited on Si surfaces to generate ferroelectric 
memory FETs [47]. It has been found that BaMgF4 grown on GaAs or AlGaAs (100) surfaces at 
450°C is amorphous [48]. This film does not exhibit hysteresis, but is a paraelectric insulator with 
a relative dielectric constant er of 35. The substrate was (100) n-type GaAs at 450°C.  The growth 
rate was 0.4 (xm/h. 

At temperatures of 500-600°C polycrystalline ferroelectric films exhibiting hysteresis were 
grown, with a (140) orientation.   Their coercive field was about 200kV/cm and the remanent 
polarization Pr about 1.3 |iC/cm2.   For monocrystalline material the expected value of Pr is 4 

fiC/cm2.   
In order to obtain high-gm HFETs with truly negligible gate currents, we therefore 

recommend choosing the factor X defined in Sec. 4 to be V2.  We thus obtain a transconductance 

increased by a factor of 2V2, a total barrier thickness increased by a factor of V2, and therefore a 
negligible gate current. Practically, this is achieved by properly structuring the barrier grown on 
the undoped GaAs channel. First a 5 nm undoped AlGaAs spacer layer is deposited on the 
channel, then 10 nm of n-type AlGaAs, followed by 20 nm of amorphous BaMgF4, and by the 
metal of the gate electrode, e.g., Al. 

By varying the growing temperature and speed in the interval of 450-495°C and around 0.4 
fim/h, we may be able to achieve a useful further increase in e without detrimental hysteresis 
effects. 

6.  1/f Noise 

The 1/f noise of the 2-DEGrees-of-freedom-electrons in the conducting InGaAs channel is 
determined by the conventional quantum 1/f formula for polar optical scattering at 300K, or for the 
mixture of polar optical phonon, longitudinal acoustical phonon, piezoelectric, and lattice defect 
scattering at 70K. The spectral density S of fractional quantum 1/f fluctuations ST/T of the electron 
scattering rate T in a process with velocity change Av of the electrons is 

Ssr/r(0 = 2aA/fN = (4a/37tfN)(Av/c)2. (90) 

The fractional quantum 1/f fluctuation 8r/Tof the electron scattering rate T on a polar optical 
phonon of momentum ft q and energy ft coq=o)0 is given by the spectral density 

S5r/r(0 = (4a/3 jtfN)<(fi q/meffc)2> = (4a/37cfN)2<(n k/meffc)2>. (91) 

Here we have estimated the average quadratic momentum change of the electrons, resulting from 
the momentum ft q of the optical phonon to be 2(R k)2, because the momentum transfer to 
electrons of momentum ft k is known [46] to be between the limits h qmjn= h {-k+[k2 + 2meff(0o/h 

]1/2} and h qmax= h {k+[k2 + 2meffo)0/R ]1/2}. With <(fik/meff )2> =3kT/meff and m^ 
0.068mo, Eq. (91) yields a spectral density 

S5r/r(0 = 1.8-10-8 /fN = Sg^(f) = s6I/l(f)) (92) 

where I is the source to drain current, and N the number of carriers in the channel. The expected 
rms drain current fluctuation amplitude is thus 1.34-10"4 VNVf. Both through N and through the 
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drain current Id this simple result depends on the applied gate voltage VQ. 

7.   Conclusions 

The preceding discussion indicates that a paraelectric or hysteresis-free ferroelectric gate 
insulation is ideal for special HFETs meeting bandwidth requirements from 0 to 100 GHz. It 
allows total suppression of gate leakage currents, while also assuring a large increase in the 
transconductance of the device at frequencies under 100 MHz, where the permittivity is still high. 

The gradual decrease of e in the UHF region is actually very useful, since it limits the free 

fall of the input impedance G^C)"1 of the device to zero, which would load the source excessively. 
Finally, the lower temperature BaMgF4 technology avoids oxidation and degradation of the 

compound semiconductors, and a further improvement in 8 through mobile ferroelectric micro- 
domains is possible by optimizing the growing conditions. 

The author is indebted to F. Schuermeyer for suggesting the research for elimination of gate 
currents and for many helpful discussions. 

IX. TWO-DIMENSIONAL ALL-OPTICAL PARALLEL-TO SERIES 
TDM AND DE-MULTIPLEXING BY 

SPECTRAL-HOLOGRAPHIC METHODS 

All-optical one-dimensional parallel-to serial conversion by holographic one-dimensional 
space-to time frequency encoding was recently introduced [49]-[51], along with the previously 
known series-to-parallel transformation. However, the large discrepancy between the Gbit/s 
capacity of coaxial cables and the Tbit/s rates achievable in optical fibers for photonic networks, 
requires the multiplexing of roughly 10^ incoming conventional signals in a single optical fiber. 
This requires harnessing of the full power of Fourier-optical holographic methods, by using both 
dimensions of optical wavefronts for data processing. The processor system we propose consists 
of two independent optical channels Q and Cs for carrying temporal signals and spatial 
information, both in its parallel-to-series (Fig. 1") and in its series-to-parallel (Fig. 2") parts. Q is 
shown with continuous lines, representing ultra-short pulsed beams, while Cs is shown with 
dotted rays, using longer pulses. 

Q passes the ultrashort pulse wave-fronts through a blazed 2-dimensional reflecting 
diffraction grating G\ which is described below (Fig.4), followed by a lens Li of focal length F, a 
real-time hologram H in its focal plane, an identical lens L2, and a second, similar, 2-D reflection 
grating G2, with a distance F between each of these 5 elements on their common optical axis. 

Cs is an optical Fourier transform channel which inputs the modified image of a rectangular 
array of sources. Cs introduces this image through the semi-transparent mirror M together with a 
reference beam. They are introduced backwards through the lens L2, creating a Fourier-transform 
hologram H which in turn acts on the forward-propagating Q beam, splitting it up in a number of 
temporally displaced beams equal with the number of sources present in the input of Cs. The sum 
of these beams is Fourier-transformed back to the time-domain, yielding the desired serial output 
of the given parallel data input. The modification hikes line intervals n times. 

First a general analysis of the 2-D parallel-to-series converter will be presented, and then a 
brief discussion of the corresponding receiver. The multiplexer works in two steps. 
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Fig. 4: Two-dimensional blazed diffraction grating, front view and perspective. 

1) In a first step, starting from a single mode-locked laser, a 2-dimensional manifold of 
N=nxm coherent beams is created by multiple beam-splitting, along with a reference beam. By 
synchronized sampling and birefringent synchronous modulation, we transfer the information from 
each one of the N incoming coaxial cables to one of the N beams, in the form of pulses of length x. 
The reference beam always carries the standard, unmodulated pulse generated by the laser. Part of 
the reference beam is separated by a beam splitter and is then re-shaped [50,51] for Q to be ultra 

short of duration TQ («T, up to 10~3 T, of the order of the reciprocal carrier bandwidth, a few tens 
of femtoseconds). The rest of the reference beam separated by the beam splitter goes to the C$ 
channel together with the N modulated beams. The first step thus creates a rectangular array of 
luminous sources with n columns and m rows plus the reference beam, which yield the (r) input 

beam to Cs, and an ultrashort sequence of pulses which yields the (to) input beam to Ct- The 
input to Q is thus a regular sequence of pulses in time, of the form 

s(t) = p(t-to) exp(j(üct), (93) 
with Fourier transform 

P((D-(Oc)exp[-j(co-coc)to], (94) 

where P(w) is the Fourier transform of p(t). 

2) In the second step, this input beam passes through Q.    Let the temporal transfer 

function of Q be H(w). Then the output spectrum will be 

H(w)P(co-coc)exp[-j((0-o)c)to]. (95) 

To calculate H(to), we calculate the output resulting from the passage of a monochromatic 

input expfj(cot-kr) through Q.  Let k be incident on the 2-D diffraction grating located in the xy 

plane with directing cosines a and ß to the x and y axes.  The blazed 2-D diffraction grating is 
obtained by applying a squared lattice chess board-like black deposit on a 1-D blazed diffraction 
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grating at 45° to the diffraction grating, i.e., so that the x and y axes of the applied chess board are 
at 45° from the groves of the 1-D blazed grating (Fig. 4). The lattice constant of the applied chess- 
board lattice is twice the side of any white or black field on the chess board, and equals the 
constant of the original blazed lattice times 21/2. The diffracted optical field (Fig. 1") generated by 
the monochromatic input right after the plane Pi of the grating is 

si(x,y; co) = exp[-j(<o-G)c)(ax+ßy)/c] w(x,y), (96) 

where w(x,y) is the pupil function of the grating. After passage through the lens Li the optical 
field in plane P2 right before the hologram is the Fourier transform of the field in Eq. (96), given 
by 

S2&T1; G>) = Wß+OC(CO-Cüc)/27IC, T)+ß(G>-COC)/27tc], (97) 

where W(£,r|) is the spatial Fourier transform of w(x,y).    The wave numbers £ and T| are 

expressed in terms of the spatial Cartesian coordinates X and Y in P2 by £=CuX/2n:cF and 

ri=(oY/27tcF. We note parenthetically that, as indicated by Eq. (97), an optical pulse introduced 
into the system will have its various Fourier components spatially dispersed along the diagonal of 
the Fourier transform plane,-each occupying an area determined by the function W(£,T|). 

We now take into account that a spatial Fourier transform hologram of the above-mentioned 
rectangular nxm input array has been independently recorded by Cs in the hologram H of Fig. 1". 

This hologram is a superposition of the nxm holograms of the individual luminous sources present 
in the rectangular input array, with amplitudes Ajxv corresponding to the bit of information carried 

by the channel \iv to be multiplexed. This hologram serves as a temporal frequency filter with 
transmittance 

m   n 
t&Tl) = X   I A^vexpü27t(Cöw/Cö)(vAx4+uAyT|)], (98) 

M,= lv=l 

where Ax is the geometrical distance between columns and Ay is the modified distance between the 

rows in the regular input array fed into Cs, whereas C0\y is the frequency of the writing field used 

for recording the hologram, in our case Cöc-   It is necessary to take Ay > nAx, and suitable to 

choose, e.g., Ay = (n+l)Ax. This is achieved with the help of a convergent cylindrical 
magnifying lens placed in front of the rectangular array of light sources, with its cylindrical axis 
parallel to the x-axis, which would cause the separation between rows to appear larger.   In 
addition, we assume (n+l)mAx+cco ^ ex. 

Returning now to Q, right after passage through the hologram, the optical field in P3 will 
be 

S3&T1; co) = S2&T1; co) tß,Ti). (99) 

After passage through L2, the field in plane P4 is given by a second spatial Fourier transform 
which yields 
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m   n 
S4(x,y; co) = Z   Z A^,vw[-x+vAx, -y+fiAy] 

M-=lv=l 
xexp[(j/c)(Q)-coc)[a(x-vAx(o)w/co)) + ß(y-nAy(cow/co))]. (100) 

This field is diffracted by the 2-D grating G2 and yields the output field propagating in the 
k" or z" direction 

m   n 
S5(x",y"; co) = I   Z A^vw[-x"+a"vAx, -y"+ß"|iAy] 

H=lv=l 
xexp[(j/c)(co-0)c)(o)w/co)(avAx + ßjiAy)] = H(co). (101) 

This is the temporal transfer function of the system.  Here a" and ß" are directing cosines of the 

outgoing wave vector k". Assuming Ay = (n+l)A and A=AX, 
m   n 

H((0) =  Z   Z A^vw[-x"+a"vAx, -y"+ß"nAy] 

|Ll=lV=l 

xexpfj(A/c)((o-(Oc)(tOw/ö))[av + ß(x(n+l)]} (102) 

The temporal output function allows the determination of the serial output of the multiplexer 
as the Fourier transform of Eq. (95) 

m   n 
s0(x",y"; 0 = [ Z   I An,vw[-x"+a"vAx, :y"+ß"»iAy]p(t-to-r8t)] expOfflct).       (103)  • 

H=lv=l 
Here r = v + p.(ßAy/aAx) = v + p.(ß/a)(n+l); for a=ß, r = v + (x(n+l).   The interval 8t was 

defined as aAx/c. The ratio cow/a» was approximated by 1 which is reasonable for not too large 
bandwidths, but may lead to errors in our case. These errors should be further investigated. 

Eq. (103) shows that the parallel-to-series or multiplexing operation was performed. Along 
with the series signal, the non-diffracted portion of the readout beam coming from the hologram H 
in Fig. 1" is also transmitted to the receiver as a reference signal. 

In principle, all beams could be reversed. This observation makes the description and 
operation of the de-multiplexer shown in Fig. 2" straightforward. A hologram is recorded at the 
receiver site between the incoming serial signal shown by Eq. (103) and the received reference 
signal, both having first been diffracted in reflection by the identical diffraction grating G. This 
real time hologram is modulating the cw monochromatic readout wave front coming from the left in 
Fig. 2" and passing through the hologram, thereby creating N=nxm beams. The result is thus a 

two-dimensional nxm parallel optical output which is extracted with the help of the semi- 

transparent mirror M and projected on a nxm array of outgoing optical fibers, or on a similar array 
of photodetectors. For quantum 1/f noise in the MQW holographic medium see Sec. XI.2. 

X. LOW-FREQUENCY NOISE IN ULTRATHIN SEMICONDUCTOR DEVICES 

In ultrathin semiconductor devices, surface scattering can no longer be ignored and 
significantly lowers the mobility of the carriers.   This contributes a term in the scattering rate, 
which is proportional to A/a in first approximation, where a is the thickness of the crystalline 
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semiconductor sample. Since umklapp and intervalley scattering are the main limitation on the 
mobility of current carriers in silicon, and since they are affected by the largest conventional 
quantum 1/f effect, we expect a 1/f noise reduction in properly fabricated ultrathin semiconductor 
samples. 

Ultrathin silicon samples and devices are obtained at the Univ. of California Irvine 
Microfabrication Laboratory in the Engineering Gateway building. One of the methods used by us 
involves uniform etching to reduce the thickness of the sample by an order of magnitude. 

To estimate the conventional quantum 1/f effect (CQl/fE) in ultrathin Sf devices and 
integrated circuits (IC), we need to also include the effect of the reduction in carrier life time x due 
to the surface recombination rate. This increases the 1/f noise in junction devices, because the 
quantum 1/f effect is inversely proportional to the number "N" of carriers which have participated in 
the generation-recombination-limited current transport through the various p-n junctions.   This 
number is, however, given by the GR component of the current I multiplied by the life time % of 
the carriers. 

Assuming small samples, the CQl/fE is applicable and is affecting surface scattering rates 
according to the fundamental formula 

S8r/r = (4a/3rc)<(Av/c)2>. (104) 

The brackets indicate a statistical average over the parameters of a surface scattering. We obtain the 
1/f noise power spectrum by substituting a considerably increased thermal velocity for Av, because 
of the surface potential (Vo>0 in n-type) in the presence of an accumulation layer, which is not 
applicable for Vo<0 (depletion in n-type material). However, the case of inversion would lead 
again to a 1/f noise increase in spite of Vo<0, but there is also a carrier identity switch which 
affects the result in this case, due to the difference in effective mass and scattering mechanism. 

1.Surface Scattering and Bulk Scattering 

The total scattering rate is the sum of surface and bulk scattering rates. Therefore, the 
mobility [i will be determined from the mobility |i.b existent in the absence of surface scattering in 

the bulk material and from the mobility ji.s which would be present in that sample in the absence of 
bulk scattering 

l/p.= 1/Hb+ 1/jis- 
(105) 

The quantum 1/f fluctuations will therefore satisfy the relation 

6|i/u2 = önbA-ib2 + 8|is/Hs2- 
(106) 

Consequently, the CQl/fE spectral density S5jj/jj.(f) = <(5u7|i)2>f satisfies the relation 

S5U4L= (^2/Hb2)<(8wyHb)2>f + ^W)<(5^s)2>f. (107) 
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For the quantum 1/f noise in the bulk mobility we write 

<(5nt>/nb)2>f = (4cc/37üNf)<(fi Ak/mc)2> = (4a/3jtNf)(0.75h/amc)2, (108) 

where mis the effective mass of the carriers, and the effective Ak was taken to be 0.75 G. Here G 

is the smallest reciprocal lattice vector 2ft/a, where a is the lattice constant and h=2nh .   Finally, 

a=e2/h c is Sommerfelds fine structure constant and N is the number of carriers in the sample. 

The CQl/fE in the surface-scattering-limited mobility |XS is obtained from Eq. (104) by 
substituting 

(Av/c)2 = 6kT/mc2 + 2e Vo/m. (109) 

This yields 

<(8(is/|is)2>f = (4a/3TcNf)[6kT/mc2 + 2eVo/mc2], (110) 

where e is to be replaced by -e, and m by m' the case of inversion, m and m' being the effective 
masses of the carriers. 

The final expression for the resulting power spectrum of quantum 1/f mobility fluctuation is 
thus 

S8y|i= occonv /Nf = (4a/37cNfc2)[(u/ub)2(0.75h/am)2 

+ (LL/iic^rökT/m H + (M/Hs)2(6kT/m + 2eVo/m)]. (Ill) 

In this expression the quantity in round brackets in the second term on the right hand side is always 
smaller than the corresponding round bracket present in the first term, corresponding to lattice 
scattering, and characteristic for the bulk material. However, the relative contribution of the two 
terms on the right hand side depends on the sample thickness. For a given sample this second term 
can be further reduced by treating the surface in order to obtain a depletion layer (with a small 
Vo<0 for n-type material). 

2. Influence of Dislocations Arising from Bending Deformation 

Uniform bending with a radius of curvature R will generate a surface density of 
dislocations of p=l/aR and an additional volume density of defects n^ =l/a2R in the given 

ultrathin sample. Assuming we know the measured mobility |i0of the given sample before 

bending, the theoretical mobility n, =1^^ of the ideal sample with no defects (limited by phonon 
scattering, intervalley and umklapp only) and the concentration of defects n^ in the given sample 
before bending, we can derive for the quantum 1/f noise spectral density of fractional fluctuations 
expected in the bent ultrathin sample the approximate formula 

S8n/,i = {(lO/tO+r).!, - r^ij2 JS^f), (112) 

in which ^njn^, and S13"^ (f) is the theoretical quantum 1/f spectral density affecting n, in an 
ideal sample with no defects, being caused by phonon scattering, intervalley and umklapp only. 
This formula is obtained by neglecting the quantum 1/f noise of defect scattering (both ionized or 
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neutral, both impurity defects and lattice defects) compared to the much larger quantum 1/f noise of 
lattice scattering, including phonon scattering, intervalley and umklapp in the ideal lattice. 

►      !        i       ► 

• b —• 
Fig. 5: To define the parameter s, a slice as thick as the classical 

electron radius is considered. The number of carriers in it is s. 

Log a   or Log a /N 
H H 

Conventional 

-7   a 

0.1 Jim 

Fig. 6: The quantum 1/f parameter o^ and the resulting spectral density Sj=aH/Nf 
as a function of the number of carriers in the sample N or of the cross section size L 
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If a lattice constant of a=lÄ and a bending radius of curvature R=10 cm are considered, the 
resulting dislocation densities of p=107 cm"2 and n^ =1015 cm"3 have to be compared with the pre- 
existing concentration of defects n^. Assuming nodef=1016 cm"3, we obtain r=0.1. The resulting 
correction is a small reduction in the expected noise. However, this calculation neglects all current- 
redistribution effects which result from a non-uniform distribution of dislocations introduced by 
bending. It also neglects the effect of the decreased lifetime of the carriers in bent ultrathin ICs, in 
particular on the junction devices or on other unwanted junctions present in the IC. All these 
effects result in increased conventional quantum 1/f noise. The 
increased non-uniformity of the current distribution also results in an increase of the coherent 
quantum 1/f effect present in the larger samples as we see in the next section. 

3. Deviations from the General 1/N Dependence of the Noise 
in the Presence of a   Coherent Quantuml/f Vestige 

At this point we ask how the Ql/fE changes when we scale a macroscopic conductor, 
semiconductor, sample or device down to ultrasmall thickness. The transition from coherent to 
conventional Ql/fE, derived above in Eqs. (58)-(59), is given by the relation 

<xH = (l/l+s)ccconv + (s/l+s)acoher = (l/l+s)(4a/37t)(Av/c)2 + (s/l+s)(2a/7t), (113) 

where s is a parameter which governs the transition and depends on the concentration n of carriers 
and on the transversal cross section area Q of the conductor, semiconductor, sample or device, 
perpendicular to the direction of the current. Specifically, 

s = 2nQr0. (114) 

Here r0 = e2/mc2 is the classical radius of the electron, r0= 2.84 10"13cm. Therefore, s is twice the 
number of carriers in a salami slice of thickness equal with the classical diameter of the electron, 
normal to the direction of current flow (see Fig. 5). The resulting spectral density of fractional 
quantum 1/f fluctuations is then given by the quantum 1/f coefficient o^ through the Hooge relation 

S8j/J(f)= ccH/fN. (115) 

This resulting total dependence on N is shown qualitatively in Fig. 6 above for the transition from 
macroscopic dimensions to ultrasmall samples. It shows that although the spectral density varies 
monotonously when the thickness of the sample and thereby also the size of the current-carrying 
cross section is lowered down to nanoscale dimensions, there is a plateau on which the "spectral 
density remains constant, while c^ changes its value. 

XI. QUANTUM 1/f EFFECT IN SEMICONDUCTOR AND MAGNETIC 
STRUCTURES WITH NANOSCALE DIMENSIONS 

The main purpose of this section is to show how the quantum 1/f effect affects the 
operation of quantum engineering devices, i.e., quantum dots (or single-electron transistors), 
quantum wells, quantum wires, spin transistors or arrays of all these devices. 

1. Quantum 1/f Effect in Quantum Dots 

Quantum dots are also known as artificial atoms or single-electron transistors (SET). A 
small portion of the length of the 2-degrees-of-freedom (2D) channel of a HFET is pinched off 
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with two barriers. For a certain value of the gate potential, the discrete energy level of a free 
electron in the SET corresponds with the fermi-energy of the metal in the leads, allowing the 
electron to perform resonant tunneling through the SET. For other values, there is no current 
transport, at least if the temperature is sufficiently low and if the Kondo-effect is negligible. The 
Kondo effect causes the channel resistivity to increase at low temperature, because of the coupling 
with localized impurity spins in the channel. Moreover, the Kondo interaction also causes energy 
contributions which broaden the line-shape of the resonance mentioned above, thereby broadening 
the transmission line in the current dependence on gate voltage, introducing a characteristic double 
peak structure due to spin interactions. The quantum 1/f effect is present in the current transmitted 
through the SET off-resonance, and should be studied in order to better quantify the thermal and 
Kondo energy and momentum differences.   

Indeed, the quantum 1/f effect depends on the momentum change Ap of the electrons in the 
tunneling process, while the off-resonance current depends on the energy change of the electrons. 
This allows the effective spectrum of elementary excitations to be studied by comparing these two 
dependences. Furthermore, using the conventional quantum 1/f formula, one can then optimize the 
device for practical applications which require stability of the current flowing through the open 
SET. Since N is 1 in the SET, the Ql/fE is expected to be relatively large in this devices. 

2. Quantum 1/f Effect in Quantum Wells 

A two-dimensional all optical processor which multiplexes a rectangular array of parallel 
incoming signals into a series output transmitted through a single optical fiber was suggested for 
the first time by the author in Sec. IX above. The system uses four-wave interaction in a hologram 
projected on a multiple quantum well (MQW) device, both for time-division multiplexing and for 
demultiplexing. It can be used for the direct fiber-optical transmission of many time-dependent 
images, without going through the usual video-electronic serialization, as well as for multiple 
analog or digital, video and audio-transmissions, or multiplexing and demultiplexing of any nature. 

The system is very sensitive to quantum 1/f amplitude and phase noise introduced by the 
quantum wells in the holographic medium and by the semi-transparent mirrors. The MQW device 
is a semi-insulating MQW, or SI-MQW. It consists for instance of a succession (e.g., 150) of 
(e.g. 100Ä wide) GaAs quantum wells sandwiched between AlGaAs barrier planes (e.g., 35Ä 
thick). Large diffraction efficiency of the red-out beam can be obtained when a real-time hologram 
is recorded in the material. The diffraction efficiency is the ratio of the diffracted beam power to 
the incident power. 

The recording of the hologram is performed by the generation of fringes of high 
conductivity (e.g., p-type) sandwiched by semi-insulating (intrinsic) fringes at places of 
destructive interference in the otherwise semi-insulating MQW device. The high-conductivity 
fringes appear where the two coherent beams have interference maxima: the parallel optical 
information carrying beam and the reference beam. 

The Ql/fE will be influenced by the discrete energy level sheme present in each quantum 
well and by any coupling between wave functions allowing tunneling between wells. Due to the 
small average concentration of carriers n in the MQW structure, the quantum 1/f conductivity 
fluctuations 8a are large, the spectral source term Sa(f,r,r') =<8ar8ar>f being proportional to 1/n. 
Due to the small concentration n, the magnetic contribution to the energy of the electronic drift 
motion is negligible, and therefore the conventional quantum 1/f formula is applicable. The 
conventional quantum 1/f formula, gives a spectral source term of S0(f,r,r') = (4aAv2/37cfnc2)8(r- 

r'), where a =1/137 is the fine structure constant, Av the velocity change in the scattering process 
dominating the resistivity, and n the local concentration of carriers. 

The effect of this large quantum 1/f noise on the diffraction efficiency is amplified, because 
the diffraction efficiency is proportional to the difference in a between the diffraction maxima and 

minima. The relative fluctuation spectrum of the diffraction efficiency is given by [Sa + S G']/(o- 
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a')2. When a constant image is transmitted, i.e., if the nxm incoming channels are each locked in 
the endless repetition of a certain bit of information (e.g., 0 or 1), the received image emerging 
from the demultiplexer will flicker due to the quantum 1/f noise in both the multiplexer and 
demultiplexer. This will determine how large the logic swings are and how large the minimal 
power levels in the hologram are, compared with the ones acceptable. Certain holographic media 
(e.g., semi-insulating CdZnTe/ZnTe multiple-quantum-well photorefractive devices), may be 
eliminated on this basis. The quantum 1 /f refraction index modulation is related to the quantum 1 
/f conductivity fluctuation through the Cramers-Cronig dispersion relations. 

3. Quantum 1/f Effect in Spin Decoherence Rates 

The conventional quantum 1/f effect (Ql/fE) in any rate T or cross section a is a 
macroscopic quantum phenomenon described by the quantum engineering formula derived above, 

S8r/r(f) = S8o7o(f) = (4a/37tfN)(Av/c)2 (116) 

Planck's constant is in the denominator here, and this causes unusual behavior. Instead of being 
relevant at high frequencies, this quantum effect is important at very low frequencies, where it 
diverges, thereby becoming macroscopically observable in any laboratory or electronic device, 
although it is a genuine quantum fluctuation. Its quantum expectation is zero. Experiments have 
verified the 1/f spectrum of fundamental 1/f noise to below the frequency of 10~7 Hz. However, 
its presence in most dissipative parameters which enter VHF and UHF generators, mixers, 
resonators, amplifiers, attenuators, etc, causes it to limit the stability of high-tech devices and 
systems at any frequency in the form of phase noise or flicker of frequency. 

The main purpose of this section is to show how the quantum 1/f effect affects the 
operation of quantum engineering devices, i.e., quantum dots (or single-electron transistors), 
quantum wells, quantum wires, spin transistors or arrays of all these devices. 

3.1 Quantum 1/f Fluctuations of the Nuclear Spin Decoherence Rate. Decoherence 
is caused by the elementary spin-flip of a nucleus due to its interaction with the rest of the world. 
The rate of this process, which reduces the total magnetic moment M of the sample by the magnetic 
moment m of a single nucleus undergoing a change of one h in its spin projection, has quantum 

• 

fluctuations according to Eq. (116). The current change eAv causing bremsstrahlung is here (AM 
)/e, the change in the rate of demagnetization caused by the emission of a energy quantum. This 
yields 

S8r/r(0 = 4a(Av)2/3itfc2 = 4a(AM )2/3?tfe2c2; (117) 

Let mnuci be the mass of a nucleus, and let N be the number of elementary magnetic di- 

poles m=7efi /mnucic- Applying a variation An=l, we get 

An/n = 1AM I/1M I, or AM =M /n = H/en /(mnucic-n). (118) 

Substituting AM into Eq. (117), we get 

P2Sr(0 = 4oc[H7eh /(mnUclc-n)]2/37tfe2c2 = 4a[H7h /(mnucic2-n)]2/37cf. (119) 

This is the spectral density of fractional quantum 1/f fluctuations in the rate T of decoherence 
(electrodynamical Ql/fE only). 

3.2 Quantum 1/f Effect in the Decoherence Time of Spin Transistors.   The deco- 
herence time of spin transistors is given by the spin relaxation time T, which is of the order of 45 

43 



(is in the metal of the base, and which is strongly affected by the Ql/fE. A bottleneck is created in 
the spin transistor due to the scarcity of electrons with the right sign of the spin which are accepted 
by the collector. Therefore, current flow is proportional with the value of Tv Only those electrons 
which lose coherence, being subject to a spin-flipping decoherence interaction, can pass into the 
collector. 

Decoherence is a very important process, because it causes what had earlier been simply 
called collapse of the wave function in the quantum mechanical measurement process, and because 
it limits the accessibility of quantum computing. Therefore it is interesting to note that the 
decoherence rate fluctuates with a 1/f spectral density. The quantum-electrodynamic part of these 
quantum 1/f fluctuations is caused by bremsstrahlung in the elementary interaction processes 
causing the decoherence. This, in turn, can be for instance electro-electron scattering, with a 
quantum 1 /f effect given by Eq. (116) above. 

XII.  CONCLUSIONS 

There is often a large gap between the practical performance of various high-technology 
devices and the optimal performance allowed by the quantum limit. This report indicates the way 
to close the gap for the particular case of radiation-hardening and optimization of multiple satellite 
systems. It tries to go one step farther, by redesigning various devices used in this challenging 
space application, in order to optimize their performance in terms of the ultimate resolution (e.g. in 
the LORAN system), or in terms of the signal to noise ratio (Quartz resonators, SQUIDs), or in 
terms of a figure of merit (infrared detectors). In particular, we have found that in high frequency 
systems quantum 1/f noise in the local oscillator's dissipative parameters induces flicker of 
frequency, which translates in turn into location errors and other system errors. 

In general, the quantum 1/f effect is expected to determine the ultimate performance limits 
of any high-technology device. Indeed, the main characteristic of "high-tech" is the elimination, 
compensation or total control of all previously known sources of instability or fluctuations 
affecting the given device.  This brings to the forefront the fundamental quantum 1/f fluctuations 
present in the elementary cross sections a; and process rates Tj, which essentially control the rate 
of the main phenomena defining the performance of the device, i.e., defining the parameters which 
are most important in the specification of the device, such as the resistance of a bolometer, the dark 
current of an infrared detector, the normal resistance and the critical current of a SQUID, the 
frequency of a quartz resonator or of a GaAs ring oscillator. This is why virtually all high-tech 
devices are limited by quantum 1/f noise given by the sum of the squared partial derivatives of the 
most important device parameter (current, frequency, etc.)  with respect to the controlling 
elementary   o{   or   Tj,   each   multiplied   by   the   corresponding   quantum    1/f   spectrum 

Sa(f)=(2aA/fN)a2 or Sr{f)=(2aA/fN)r2, so that the fine structure constant 1/137 will be a 
common factor in the end. The quantum 1/f noise formula obtained this way for every hi-tech 
device can be used to optimize the device design. In contrast, low-technology devices are usually 
dominated by trivial destabilizing fluctuations, such as temperature and humidity fluctuations, 
random oxidation or diffusion of impurities and defects in an aging semiconductor which has not 
been properly annealed and passivated, etc. 
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